import os from pymilvus import ( utility, FieldSchema, CollectionSchema, DataType, Collection, ) from db_connect import connect, disconnect connect() #region creating collections ### Create collections ### fields = [ FieldSchema(name="id", dtype=DataType.INT64, is_primary=True, auto_id=True), FieldSchema(name="text", dtype=DataType.VARCHAR, max_length=65535), FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=384) ] schema = CollectionSchema(fields, "Texts to generate audio for. " "This collection cache the texts needed to generate audio. " "We can then do offline generation for the audio file.") utility.drop_collection("Response") response_collection = Collection("Response", schema) index_params = { "metric_type": "COSINE", "index_type": "IVF_FLAT", "params": {"nlist": 1024} } response_collection.create_index(field_name='embeddings', index_params=index_params) utility.index_building_progress("Response") fields = [ FieldSchema(name="id", dtype=DataType.INT64, is_primary=True, auto_id=True), FieldSchema(name="text", dtype=DataType.VARCHAR, max_length=65535), FieldSchema(name="filename", dtype=DataType.VARCHAR, max_length=65535), FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=384) ] audio_schema = CollectionSchema(fields, "The text that corresponds to the audio file.") utility.drop_collection("AudioResponse") audio_response_collection = Collection("AudioResponse", audio_schema) audio_response_collection = Collection("AudioResponse") index_params = { "metric_type": "COSINE", "index_type": "IVF_FLAT", "params": {"nlist": 1024} } audio_response_collection.create_index(field_name='embeddings', index_params=index_params) utility.index_building_progress("AudioResponse") #endregion disconnect()