import math import random from typing import Optional, Tuple from fairseq.checkpoint_utils import load_model_ensemble_and_task import numpy as np import torch import torch.nn.functional as F # from fairseq.data.data_utils import compute_mask_indices from fairseq.utils import index_put # @torch.jit.script def pad_to_multiple(x, multiple, dim=-1, value=0): # Inspired from https://github.com/lucidrains/local-attention/blob/master/local_attention/local_attention.py#L41 if x is None: return None, 0 tsz = x.size(dim) m = tsz / multiple remainder = math.ceil(m) * multiple - tsz if int(tsz % multiple) == 0: return x, 0 pad_offset = (0,) * (-1 - dim) * 2 return F.pad(x, (*pad_offset, 0, remainder), value=value), remainder def extract_features( self, x, padding_mask=None, tgt_layer=None, min_layer=0, ): if padding_mask is not None: x = index_put(x, padding_mask, 0) x_conv = self.pos_conv(x.transpose(1, 2)) x_conv = x_conv.transpose(1, 2) x = x + x_conv if not self.layer_norm_first: x = self.layer_norm(x) # pad to the sequence length dimension x, pad_length = pad_to_multiple(x, self.required_seq_len_multiple, dim=-2, value=0) if pad_length > 0 and padding_mask is None: padding_mask = x.new_zeros((x.size(0), x.size(1)), dtype=torch.bool) padding_mask[:, -pad_length:] = True else: padding_mask, _ = pad_to_multiple( padding_mask, self.required_seq_len_multiple, dim=-1, value=True ) x = F.dropout(x, p=self.dropout, training=self.training) # B x T x C -> T x B x C x = x.transpose(0, 1) layer_results = [] r = None for i, layer in enumerate(self.layers): dropout_probability = np.random.random() if self.layerdrop > 0 else 1 if not self.training or (dropout_probability > self.layerdrop): x, (z, lr) = layer( x, self_attn_padding_mask=padding_mask, need_weights=False ) if i >= min_layer: layer_results.append((x, z, lr)) if i == tgt_layer: r = x break if r is not None: x = r # T x B x C -> B x T x C x = x.transpose(0, 1) # undo paddding if pad_length > 0: x = x[:, :-pad_length] def undo_pad(a, b, c): return ( a[:-pad_length], b[:-pad_length] if b is not None else b, c[:-pad_length], ) layer_results = [undo_pad(*u) for u in layer_results] return x, layer_results def compute_mask_indices( shape: Tuple[int, int], padding_mask: Optional[torch.Tensor], mask_prob: float, mask_length: int, mask_type: str = "static", mask_other: float = 0.0, min_masks: int = 0, no_overlap: bool = False, min_space: int = 0, require_same_masks: bool = True, mask_dropout: float = 0.0, ) -> torch.Tensor: """ Computes random mask spans for a given shape Args: shape: the the shape for which to compute masks. should be of size 2 where first element is batch size and 2nd is timesteps padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by number of timesteps divided by length of mask span to mask approximately this percentage of all elements. however due to overlaps, the actual number will be smaller (unless no_overlap is True) mask_type: how to compute mask lengths static = fixed size uniform = sample from uniform distribution [mask_other, mask_length*2] normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element poisson = sample from possion distribution with lambda = mask length min_masks: minimum number of masked spans no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans require_same_masks: if true, will randomly drop out masks until same amount of masks remains in each sample mask_dropout: randomly dropout this percentage of masks in each example """ bsz, all_sz = shape mask = torch.full((bsz, all_sz), False) all_num_mask = int( # add a random number for probabilistic rounding mask_prob * all_sz / float(mask_length) + torch.rand([1]).item() ) all_num_mask = max(min_masks, all_num_mask) mask_idcs = [] for i in range(bsz): if padding_mask is not None: sz = all_sz - padding_mask[i].long().sum().item() num_mask = int(mask_prob * sz / float(mask_length) + np.random.rand()) num_mask = max(min_masks, num_mask) else: sz = all_sz num_mask = all_num_mask if mask_type == "static": lengths = torch.full([num_mask], mask_length) elif mask_type == "uniform": lengths = torch.randint(mask_other, mask_length * 2 + 1, size=[num_mask]) elif mask_type == "normal": lengths = torch.normal(mask_length, mask_other, size=[num_mask]) lengths = [max(1, int(round(x))) for x in lengths] else: raise Exception("unknown mask selection " + mask_type) if sum(lengths) == 0: lengths[0] = min(mask_length, sz - 1) if no_overlap: mask_idc = [] def arrange(s, e, length, keep_length): span_start = torch.randint(low=s, high=e - length, size=[1]).item() mask_idc.extend(span_start + i for i in range(length)) new_parts = [] if span_start - s - min_space >= keep_length: new_parts.append((s, span_start - min_space + 1)) if e - span_start - length - min_space > keep_length: new_parts.append((span_start + length + min_space, e)) return new_parts parts = [(0, sz)] min_length = min(lengths) for length in sorted(lengths, reverse=True): t = [e - s if e - s >= length + min_space else 0 for s, e in parts] lens = torch.asarray(t, dtype=torch.int) l_sum = torch.sum(lens) if l_sum == 0: break probs = lens / torch.sum(lens) c = torch.multinomial(probs.float(), len(parts)).item() s, e = parts.pop(c) parts.extend(arrange(s, e, length, min_length)) mask_idc = torch.asarray(mask_idc) else: min_len = min(lengths) if sz - min_len <= num_mask: min_len = sz - num_mask - 1 mask_idc = torch.asarray( random.sample([i for i in range(sz - min_len)], num_mask) ) mask_idc = torch.asarray( [ mask_idc[j] + offset for j in range(len(mask_idc)) for offset in range(lengths[j]) ] ) mask_idcs.append(torch.unique(mask_idc[mask_idc < sz])) min_len = min([len(m) for m in mask_idcs]) for i, mask_idc in enumerate(mask_idcs): if isinstance(mask_idc, torch.Tensor): mask_idc = torch.asarray(mask_idc, dtype=torch.float) if len(mask_idc) > min_len and require_same_masks: mask_idc = torch.asarray( random.sample([i for i in range(mask_idc)], min_len) ) if mask_dropout > 0: num_holes = int(round(len(mask_idc) * mask_dropout)) mask_idc = torch.asarray( random.sample([i for i in range(mask_idc)], len(mask_idc) - num_holes) ) mask[i, mask_idc.int()] = True return mask def apply_mask(self, x, padding_mask, target_list): B, T, C = x.shape torch.zeros_like(x) if self.mask_prob > 0: mask_indices = compute_mask_indices( (B, T), padding_mask, self.mask_prob, self.mask_length, self.mask_selection, self.mask_other, min_masks=2, no_overlap=self.no_mask_overlap, min_space=self.mask_min_space, ) mask_indices = mask_indices.to(x.device) x[mask_indices] = self.mask_emb else: mask_indices = None if self.mask_channel_prob > 0: mask_channel_indices = compute_mask_indices( (B, C), None, self.mask_channel_prob, self.mask_channel_length, self.mask_channel_selection, self.mask_channel_other, no_overlap=self.no_mask_channel_overlap, min_space=self.mask_channel_min_space, ) mask_channel_indices = ( mask_channel_indices.to(x.device).unsqueeze(1).expand(-1, T, -1) ) x[mask_channel_indices] = 0 return x, mask_indices def get_hubert_model( model_path="assets/hubert/hubert_base.pt", device=torch.device("cpu") ): models, _, _ = load_model_ensemble_and_task( [model_path], suffix="", ) hubert_model = models[0] hubert_model = hubert_model.to(device) def _apply_mask(x, padding_mask, target_list): return apply_mask(hubert_model, x, padding_mask, target_list) hubert_model.apply_mask = _apply_mask def _extract_features( x, padding_mask=None, tgt_layer=None, min_layer=0, ): return extract_features( hubert_model.encoder, x, padding_mask=padding_mask, tgt_layer=tgt_layer, min_layer=min_layer, ) hubert_model.encoder.extract_features = _extract_features hubert_model._forward = hubert_model.forward def hubert_extract_features( self, source: torch.Tensor, padding_mask: Optional[torch.Tensor] = None, mask: bool = False, ret_conv: bool = False, output_layer: Optional[int] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: res = self._forward( source, padding_mask=padding_mask, mask=mask, features_only=True, output_layer=output_layer, ) feature = res["features"] if ret_conv else res["x"] return feature, res["padding_mask"] def _hubert_extract_features( source: torch.Tensor, padding_mask: Optional[torch.Tensor] = None, mask: bool = False, ret_conv: bool = False, output_layer: Optional[int] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: return hubert_extract_features( hubert_model, source, padding_mask, mask, ret_conv, output_layer ) hubert_model.extract_features = _hubert_extract_features def infer(source, padding_mask, output_layer: torch.Tensor): output_layer = output_layer.item() logits = hubert_model.extract_features( source=source, padding_mask=padding_mask, output_layer=output_layer ) feats = hubert_model.final_proj(logits[0]) if output_layer == 9 else logits[0] return feats hubert_model.infer = infer # hubert_model.forward=infer # hubert_model.forward return hubert_model