Spaces:
Runtime error
Runtime error
import os | |
import sys | |
from dotenv import load_dotenv | |
import shutil | |
load_dotenv() | |
load_dotenv("sha256.env") | |
os.environ["OMP_NUM_THREADS"] = "4" | |
if sys.platform == "darwin": | |
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" | |
now_dir = os.getcwd() | |
sys.path.append(now_dir) | |
import multiprocessing | |
flag_vc = False | |
def printt(strr, *args): | |
if len(args) == 0: | |
print(strr) | |
else: | |
print(strr % args) | |
def phase_vocoder(a, b, fade_out, fade_in): | |
window = torch.sqrt(fade_out * fade_in) | |
fa = torch.fft.rfft(a * window) | |
fb = torch.fft.rfft(b * window) | |
absab = torch.abs(fa) + torch.abs(fb) | |
n = a.shape[0] | |
if n % 2 == 0: | |
absab[1:-1] *= 2 | |
else: | |
absab[1:] *= 2 | |
phia = torch.angle(fa) | |
phib = torch.angle(fb) | |
deltaphase = phib - phia | |
deltaphase = deltaphase - 2 * np.pi * torch.floor(deltaphase / 2 / np.pi + 0.5) | |
w = 2 * np.pi * torch.arange(n // 2 + 1).to(a) + deltaphase | |
t = torch.arange(n).unsqueeze(-1).to(a) / n | |
result = ( | |
a * (fade_out**2) | |
+ b * (fade_in**2) | |
+ torch.sum(absab * torch.cos(w * t + phia), -1) * window / n | |
) | |
return result | |
class Harvest(multiprocessing.Process): | |
def __init__(self, inp_q, opt_q): | |
multiprocessing.Process.__init__(self) | |
self.inp_q = inp_q | |
self.opt_q = opt_q | |
def run(self): | |
import numpy as np | |
import pyworld | |
while 1: | |
idx, x, res_f0, n_cpu, ts = self.inp_q.get() | |
f0, t = pyworld.harvest( | |
x.astype(np.double), | |
fs=16000, | |
f0_ceil=1100, | |
f0_floor=50, | |
frame_period=10, | |
) | |
res_f0[idx] = f0 | |
if len(res_f0.keys()) >= n_cpu: | |
self.opt_q.put(ts) | |
if __name__ == "__main__": | |
import json | |
import multiprocessing | |
import re | |
import time | |
from multiprocessing import Queue, cpu_count | |
import librosa | |
from infer.modules.gui import TorchGate | |
import numpy as np | |
import FreeSimpleGUI as sg | |
import sounddevice as sd | |
import torch | |
import torch.nn.functional as F | |
import torchaudio.transforms as tat | |
import infer.lib.rtrvc as rtrvc | |
from i18n.i18n import I18nAuto | |
from configs.config import Config | |
i18n = I18nAuto() | |
# device = rvc_for_realtime.config.device | |
# device = torch.device( | |
# "cuda" | |
# if torch.cuda.is_available() | |
# else ("mps" if torch.backends.mps.is_available() else "cpu") | |
# ) | |
current_dir = os.getcwd() | |
inp_q = Queue() | |
opt_q = Queue() | |
n_cpu = min(cpu_count(), 8) | |
for _ in range(n_cpu): | |
p = Harvest(inp_q, opt_q) | |
p.daemon = True | |
p.start() | |
class GUIConfig: | |
def __init__(self) -> None: | |
self.pth_path: str = "" | |
self.index_path: str = "" | |
self.pitch: int = 0 | |
self.formant: float = 0.0 | |
self.sr_type: str = "sr_model" | |
self.block_time: float = 0.25 # s | |
self.threhold: int = -60 | |
self.crossfade_time: float = 0.05 | |
self.extra_time: float = 2.5 | |
self.I_noise_reduce: bool = False | |
self.O_noise_reduce: bool = False | |
self.use_pv: bool = False | |
self.rms_mix_rate: float = 0.0 | |
self.index_rate: float = 0.0 | |
self.n_cpu: int = min(n_cpu, 4) | |
self.f0method: str = "fcpe" | |
self.sg_hostapi: str = "" | |
self.wasapi_exclusive: bool = False | |
self.sg_input_device: str = "" | |
self.sg_output_device: str = "" | |
class GUI: | |
def __init__(self) -> None: | |
self.gui_config = GUIConfig() | |
self.config = Config() | |
self.function = "vc" | |
self.delay_time = 0 | |
self.hostapis = None | |
self.input_devices = None | |
self.output_devices = None | |
self.input_devices_indices = None | |
self.output_devices_indices = None | |
self.stream = None | |
if not self.config.nocheck: | |
self.check_assets() | |
self.update_devices() | |
self.launcher() | |
def check_assets(self): | |
global now_dir | |
from infer.lib.rvcmd import check_all_assets, download_all_assets | |
tmp = os.path.join(now_dir, "TEMP") | |
shutil.rmtree(tmp, ignore_errors=True) | |
os.makedirs(tmp, exist_ok=True) | |
if not check_all_assets(update=self.config.update): | |
if self.config.update: | |
download_all_assets(tmpdir=tmp) | |
if not check_all_assets(update=self.config.update): | |
printt("counld not satisfy all assets needed.") | |
exit(1) | |
def load(self): | |
try: | |
if not os.path.exists("configs/inuse/config.json"): | |
shutil.copy("configs/config.json", "configs/inuse/config.json") | |
with open("configs/inuse/config.json", "r") as j: | |
data = json.load(j) | |
data["sr_model"] = data["sr_type"] == "sr_model" | |
data["sr_device"] = data["sr_type"] == "sr_device" | |
data["pm"] = data["f0method"] == "pm" | |
data["harvest"] = data["f0method"] == "harvest" | |
data["crepe"] = data["f0method"] == "crepe" | |
data["rmvpe"] = data["f0method"] == "rmvpe" | |
data["fcpe"] = data["f0method"] == "fcpe" | |
if data["sg_hostapi"] in self.hostapis: | |
self.update_devices(hostapi_name=data["sg_hostapi"]) | |
if ( | |
data["sg_input_device"] not in self.input_devices | |
or data["sg_output_device"] not in self.output_devices | |
): | |
self.update_devices() | |
data["sg_hostapi"] = self.hostapis[0] | |
data["sg_input_device"] = self.input_devices[ | |
self.input_devices_indices.index(sd.default.device[0]) | |
] | |
data["sg_output_device"] = self.output_devices[ | |
self.output_devices_indices.index(sd.default.device[1]) | |
] | |
else: | |
data["sg_hostapi"] = self.hostapis[0] | |
data["sg_input_device"] = self.input_devices[ | |
self.input_devices_indices.index(sd.default.device[0]) | |
] | |
data["sg_output_device"] = self.output_devices[ | |
self.output_devices_indices.index(sd.default.device[1]) | |
] | |
except: | |
with open("configs/inuse/config.json", "w") as j: | |
data = { | |
"pth_path": "", | |
"index_path": "", | |
"sg_hostapi": self.hostapis[0], | |
"sg_wasapi_exclusive": False, | |
"sg_input_device": self.input_devices[ | |
self.input_devices_indices.index(sd.default.device[0]) | |
], | |
"sg_output_device": self.output_devices[ | |
self.output_devices_indices.index(sd.default.device[1]) | |
], | |
"sr_type": "sr_model", | |
"threhold": -60, | |
"pitch": 0, | |
"formant": 0.0, | |
"index_rate": 0, | |
"rms_mix_rate": 0, | |
"block_time": 0.25, | |
"crossfade_length": 0.05, | |
"extra_time": 2.5, | |
"n_cpu": 4, | |
"f0method": "rmvpe", | |
"use_jit": False, | |
"use_pv": False, | |
} | |
data["sr_model"] = data["sr_type"] == "sr_model" | |
data["sr_device"] = data["sr_type"] == "sr_device" | |
data["pm"] = data["f0method"] == "pm" | |
data["harvest"] = data["f0method"] == "harvest" | |
data["crepe"] = data["f0method"] == "crepe" | |
data["rmvpe"] = data["f0method"] == "rmvpe" | |
data["fcpe"] = data["f0method"] == "fcpe" | |
return data | |
def launcher(self): | |
data = self.load() | |
self.config.use_jit = False # data.get("use_jit", self.config.use_jit) | |
sg.theme("LightBlue3") | |
layout = [ | |
[ | |
sg.Frame( | |
title=i18n("加载模型"), | |
layout=[ | |
[ | |
sg.Input( | |
default_text=data.get("pth_path", ""), | |
key="pth_path", | |
), | |
sg.FileBrowse( | |
i18n("选择.pth文件"), | |
initial_folder=os.path.join( | |
os.getcwd(), "assets/weights" | |
), | |
file_types=((". pth"),), | |
), | |
], | |
[ | |
sg.Input( | |
default_text=data.get("index_path", ""), | |
key="index_path", | |
), | |
sg.FileBrowse( | |
i18n("选择.index文件"), | |
initial_folder=os.path.join(os.getcwd(), "logs"), | |
file_types=((". index"),), | |
), | |
], | |
], | |
) | |
], | |
[ | |
sg.Frame( | |
layout=[ | |
[ | |
sg.Text(i18n("设备类型")), | |
sg.Combo( | |
self.hostapis, | |
key="sg_hostapi", | |
default_value=data.get("sg_hostapi", ""), | |
enable_events=True, | |
size=(20, 1), | |
), | |
sg.Checkbox( | |
i18n("独占 WASAPI 设备"), | |
key="sg_wasapi_exclusive", | |
default=data.get("sg_wasapi_exclusive", False), | |
enable_events=True, | |
), | |
], | |
[ | |
sg.Text(i18n("输入设备")), | |
sg.Combo( | |
self.input_devices, | |
key="sg_input_device", | |
default_value=data.get("sg_input_device", ""), | |
enable_events=True, | |
size=(45, 1), | |
), | |
], | |
[ | |
sg.Text(i18n("输出设备")), | |
sg.Combo( | |
self.output_devices, | |
key="sg_output_device", | |
default_value=data.get("sg_output_device", ""), | |
enable_events=True, | |
size=(45, 1), | |
), | |
], | |
[ | |
sg.Button(i18n("重载设备列表"), key="reload_devices"), | |
sg.Radio( | |
i18n("使用模型采样率"), | |
"sr_type", | |
key="sr_model", | |
default=data.get("sr_model", True), | |
enable_events=True, | |
), | |
sg.Radio( | |
i18n("使用设备采样率"), | |
"sr_type", | |
key="sr_device", | |
default=data.get("sr_device", False), | |
enable_events=True, | |
), | |
sg.Text(i18n("采样率:")), | |
sg.Text("", key="sr_stream"), | |
], | |
], | |
title=i18n("音频设备"), | |
) | |
], | |
[ | |
sg.Frame( | |
layout=[ | |
[ | |
sg.Text(i18n("响应阈值")), | |
sg.Slider( | |
range=(-60, 0), | |
key="threhold", | |
resolution=1, | |
orientation="h", | |
default_value=data.get("threhold", -60), | |
enable_events=True, | |
), | |
], | |
[ | |
sg.Text(i18n("音调设置")), | |
sg.Slider( | |
range=(-24, 24), | |
key="pitch", | |
resolution=1, | |
orientation="h", | |
default_value=data.get("pitch", 0), | |
enable_events=True, | |
), | |
], | |
[ | |
sg.Text(i18n("共振偏移")), | |
sg.Slider( | |
range=(-5, 5), | |
key="formant", | |
resolution=0.01, | |
orientation="h", | |
default_value=data.get("formant", 0.0), | |
enable_events=True, | |
), | |
], | |
[ | |
sg.Text(i18n("Index Rate")), | |
sg.Slider( | |
range=(0.0, 1.0), | |
key="index_rate", | |
resolution=0.01, | |
orientation="h", | |
default_value=data.get("index_rate", 0), | |
enable_events=True, | |
), | |
], | |
[ | |
sg.Text(i18n("响度因子")), | |
sg.Slider( | |
range=(0.0, 1.0), | |
key="rms_mix_rate", | |
resolution=0.01, | |
orientation="h", | |
default_value=data.get("rms_mix_rate", 0), | |
enable_events=True, | |
), | |
], | |
[ | |
sg.Text(i18n("音高算法")), | |
sg.Radio( | |
"pm", | |
"f0method", | |
key="pm", | |
default=data.get("pm", False), | |
enable_events=True, | |
), | |
sg.Radio( | |
"harvest", | |
"f0method", | |
key="harvest", | |
default=data.get("harvest", False), | |
enable_events=True, | |
), | |
sg.Radio( | |
"crepe", | |
"f0method", | |
key="crepe", | |
default=data.get("crepe", False), | |
enable_events=True, | |
), | |
sg.Radio( | |
"rmvpe", | |
"f0method", | |
key="rmvpe", | |
default=data.get("rmvpe", False), | |
enable_events=True, | |
), | |
sg.Radio( | |
"fcpe", | |
"f0method", | |
key="fcpe", | |
default=data.get("fcpe", True), | |
enable_events=True, | |
), | |
], | |
], | |
title=i18n("常规设置"), | |
), | |
sg.Frame( | |
layout=[ | |
[ | |
sg.Text(i18n("采样长度")), | |
sg.Slider( | |
range=(0.02, 1.5), | |
key="block_time", | |
resolution=0.01, | |
orientation="h", | |
default_value=data.get("block_time", 0.25), | |
enable_events=True, | |
), | |
], | |
# [ | |
# sg.Text("设备延迟"), | |
# sg.Slider( | |
# range=(0, 1), | |
# key="device_latency", | |
# resolution=0.001, | |
# orientation="h", | |
# default_value=data.get("device_latency", 0.1), | |
# enable_events=True, | |
# ), | |
# ], | |
[ | |
sg.Text(i18n("harvest进程数")), | |
sg.Slider( | |
range=(1, n_cpu), | |
key="n_cpu", | |
resolution=1, | |
orientation="h", | |
default_value=data.get( | |
"n_cpu", min(self.gui_config.n_cpu, n_cpu) | |
), | |
enable_events=True, | |
), | |
], | |
[ | |
sg.Text(i18n("淡入淡出长度")), | |
sg.Slider( | |
range=(0.01, 0.15), | |
key="crossfade_length", | |
resolution=0.01, | |
orientation="h", | |
default_value=data.get("crossfade_length", 0.05), | |
enable_events=True, | |
), | |
], | |
[ | |
sg.Text(i18n("额外推理时长")), | |
sg.Slider( | |
range=(0.05, 5.00), | |
key="extra_time", | |
resolution=0.01, | |
orientation="h", | |
default_value=data.get("extra_time", 2.5), | |
enable_events=True, | |
), | |
], | |
[ | |
sg.Checkbox( | |
i18n("输入降噪"), | |
key="I_noise_reduce", | |
enable_events=True, | |
), | |
sg.Checkbox( | |
i18n("输出降噪"), | |
key="O_noise_reduce", | |
enable_events=True, | |
), | |
sg.Checkbox( | |
i18n("启用相位声码器"), | |
key="use_pv", | |
default=data.get("use_pv", False), | |
enable_events=True, | |
), | |
# sg.Checkbox( | |
# "JIT加速", | |
# default=self.config.use_jit, | |
# key="use_jit", | |
# enable_events=False, | |
# ), | |
], | |
# [sg.Text("注:首次使用JIT加速时,会出现卡顿,\n 并伴随一些噪音,但这是正常现象!")], | |
], | |
title=i18n("性能设置"), | |
), | |
], | |
[ | |
sg.Button(i18n("开始音频转换"), key="start_vc"), | |
sg.Button(i18n("停止音频转换"), key="stop_vc"), | |
sg.Radio( | |
i18n("输入监听"), | |
"function", | |
key="im", | |
default=False, | |
enable_events=True, | |
), | |
sg.Radio( | |
i18n("输出变声"), | |
"function", | |
key="vc", | |
default=True, | |
enable_events=True, | |
), | |
sg.Text(i18n("算法延迟(ms):")), | |
sg.Text("0", key="delay_time"), | |
sg.Text(i18n("推理时间(ms):")), | |
sg.Text("0", key="infer_time"), | |
], | |
] | |
self.window = sg.Window("RVC - GUI", layout=layout, finalize=True) | |
self.event_handler() | |
def event_handler(self): | |
global flag_vc | |
while True: | |
event, values = self.window.read() | |
if event == sg.WINDOW_CLOSED: | |
self.stop_stream() | |
exit() | |
if event == "reload_devices" or event == "sg_hostapi": | |
self.gui_config.sg_hostapi = values["sg_hostapi"] | |
self.update_devices(hostapi_name=values["sg_hostapi"]) | |
if self.gui_config.sg_hostapi not in self.hostapis: | |
self.gui_config.sg_hostapi = self.hostapis[0] | |
self.window["sg_hostapi"].Update(values=self.hostapis) | |
self.window["sg_hostapi"].Update(value=self.gui_config.sg_hostapi) | |
if ( | |
self.gui_config.sg_input_device not in self.input_devices | |
and len(self.input_devices) > 0 | |
): | |
self.gui_config.sg_input_device = self.input_devices[0] | |
self.window["sg_input_device"].Update(values=self.input_devices) | |
self.window["sg_input_device"].Update( | |
value=self.gui_config.sg_input_device | |
) | |
if self.gui_config.sg_output_device not in self.output_devices: | |
self.gui_config.sg_output_device = self.output_devices[0] | |
self.window["sg_output_device"].Update(values=self.output_devices) | |
self.window["sg_output_device"].Update( | |
value=self.gui_config.sg_output_device | |
) | |
if event == "start_vc" and not flag_vc: | |
if self.set_values(values) == True: | |
printt("cuda_is_available: %s", torch.cuda.is_available()) | |
self.start_vc() | |
settings = { | |
"pth_path": values["pth_path"], | |
"index_path": values["index_path"], | |
"sg_hostapi": values["sg_hostapi"], | |
"sg_wasapi_exclusive": values["sg_wasapi_exclusive"], | |
"sg_input_device": values["sg_input_device"], | |
"sg_output_device": values["sg_output_device"], | |
"sr_type": ["sr_model", "sr_device"][ | |
[ | |
values["sr_model"], | |
values["sr_device"], | |
].index(True) | |
], | |
"threhold": values["threhold"], | |
"pitch": values["pitch"], | |
"formant": values["formant"], | |
"rms_mix_rate": values["rms_mix_rate"], | |
"index_rate": values["index_rate"], | |
# "device_latency": values["device_latency"], | |
"block_time": values["block_time"], | |
"crossfade_length": values["crossfade_length"], | |
"extra_time": values["extra_time"], | |
"n_cpu": values["n_cpu"], | |
# "use_jit": values["use_jit"], | |
"use_jit": False, | |
"use_pv": values["use_pv"], | |
"f0method": ["pm", "harvest", "crepe", "rmvpe", "fcpe"][ | |
[ | |
values["pm"], | |
values["harvest"], | |
values["crepe"], | |
values["rmvpe"], | |
values["fcpe"], | |
].index(True) | |
], | |
} | |
with open("configs/inuse/config.json", "w") as j: | |
json.dump(settings, j) | |
if self.stream is not None: | |
self.delay_time = ( | |
self.stream.latency[-1] | |
+ values["block_time"] | |
+ values["crossfade_length"] | |
+ 0.01 | |
) | |
if values["I_noise_reduce"]: | |
self.delay_time += min(values["crossfade_length"], 0.04) | |
self.window["sr_stream"].update(self.gui_config.samplerate) | |
self.window["delay_time"].update( | |
int(np.round(self.delay_time * 1000)) | |
) | |
# Parameter hot update | |
if event == "threhold": | |
self.gui_config.threhold = values["threhold"] | |
elif event == "pitch": | |
self.gui_config.pitch = values["pitch"] | |
if hasattr(self, "rvc"): | |
self.rvc.change_key(values["pitch"]) | |
elif event == "formant": | |
self.gui_config.formant = values["formant"] | |
if hasattr(self, "rvc"): | |
self.rvc.change_formant(values["formant"]) | |
elif event == "index_rate": | |
self.gui_config.index_rate = values["index_rate"] | |
if hasattr(self, "rvc"): | |
self.rvc.change_index_rate(values["index_rate"]) | |
elif event == "rms_mix_rate": | |
self.gui_config.rms_mix_rate = values["rms_mix_rate"] | |
elif event in ["pm", "harvest", "crepe", "rmvpe", "fcpe"]: | |
self.gui_config.f0method = event | |
elif event == "I_noise_reduce": | |
self.gui_config.I_noise_reduce = values["I_noise_reduce"] | |
if self.stream is not None: | |
self.delay_time += ( | |
1 if values["I_noise_reduce"] else -1 | |
) * min(values["crossfade_length"], 0.04) | |
self.window["delay_time"].update( | |
int(np.round(self.delay_time * 1000)) | |
) | |
elif event == "O_noise_reduce": | |
self.gui_config.O_noise_reduce = values["O_noise_reduce"] | |
elif event == "use_pv": | |
self.gui_config.use_pv = values["use_pv"] | |
elif event in ["vc", "im"]: | |
self.function = event | |
elif event == "stop_vc" or event != "start_vc": | |
# Other parameters do not support hot update | |
self.stop_stream() | |
def set_values(self, values): | |
if len(values["pth_path"].strip()) == 0: | |
sg.popup(i18n("请选择pth文件")) | |
return False | |
if len(values["index_path"].strip()) == 0: | |
sg.popup(i18n("请选择index文件")) | |
return False | |
pattern = re.compile("[^\x00-\x7F]+") | |
if pattern.findall(values["pth_path"]): | |
sg.popup(i18n("pth文件路径不可包含中文")) | |
return False | |
if pattern.findall(values["index_path"]): | |
sg.popup(i18n("index文件路径不可包含中文")) | |
return False | |
self.set_devices(values["sg_input_device"], values["sg_output_device"]) | |
self.config.use_jit = False # values["use_jit"] | |
# self.device_latency = values["device_latency"] | |
self.gui_config.sg_hostapi = values["sg_hostapi"] | |
self.gui_config.sg_wasapi_exclusive = values["sg_wasapi_exclusive"] | |
self.gui_config.sg_input_device = values["sg_input_device"] | |
self.gui_config.sg_output_device = values["sg_output_device"] | |
self.gui_config.pth_path = values["pth_path"] | |
self.gui_config.index_path = values["index_path"] | |
self.gui_config.sr_type = ["sr_model", "sr_device"][ | |
[ | |
values["sr_model"], | |
values["sr_device"], | |
].index(True) | |
] | |
self.gui_config.threhold = values["threhold"] | |
self.gui_config.pitch = values["pitch"] | |
self.gui_config.formant = values["formant"] | |
self.gui_config.block_time = values["block_time"] | |
self.gui_config.crossfade_time = values["crossfade_length"] | |
self.gui_config.extra_time = values["extra_time"] | |
self.gui_config.I_noise_reduce = values["I_noise_reduce"] | |
self.gui_config.O_noise_reduce = values["O_noise_reduce"] | |
self.gui_config.use_pv = values["use_pv"] | |
self.gui_config.rms_mix_rate = values["rms_mix_rate"] | |
self.gui_config.index_rate = values["index_rate"] | |
self.gui_config.n_cpu = values["n_cpu"] | |
self.gui_config.f0method = ["pm", "harvest", "crepe", "rmvpe", "fcpe"][ | |
[ | |
values["pm"], | |
values["harvest"], | |
values["crepe"], | |
values["rmvpe"], | |
values["fcpe"], | |
].index(True) | |
] | |
return True | |
def start_vc(self): | |
torch.cuda.empty_cache() | |
self.rvc = rtrvc.RVC( | |
self.gui_config.pitch, | |
self.gui_config.formant, | |
self.gui_config.pth_path, | |
self.gui_config.index_path, | |
self.gui_config.index_rate, | |
self.gui_config.n_cpu, | |
inp_q, | |
opt_q, | |
self.config, | |
self.rvc if hasattr(self, "rvc") else None, | |
) | |
self.gui_config.samplerate = ( | |
self.rvc.tgt_sr | |
if self.gui_config.sr_type == "sr_model" | |
else self.get_device_samplerate() | |
) | |
self.gui_config.channels = self.get_device_channels() | |
self.zc = self.gui_config.samplerate // 100 | |
self.block_frame = ( | |
int( | |
np.round( | |
self.gui_config.block_time | |
* self.gui_config.samplerate | |
/ self.zc | |
) | |
) | |
* self.zc | |
) | |
self.block_frame_16k = 160 * self.block_frame // self.zc | |
self.crossfade_frame = ( | |
int( | |
np.round( | |
self.gui_config.crossfade_time | |
* self.gui_config.samplerate | |
/ self.zc | |
) | |
) | |
* self.zc | |
) | |
self.sola_buffer_frame = min(self.crossfade_frame, 4 * self.zc) | |
self.sola_search_frame = self.zc | |
self.extra_frame = ( | |
int( | |
np.round( | |
self.gui_config.extra_time | |
* self.gui_config.samplerate | |
/ self.zc | |
) | |
) | |
* self.zc | |
) | |
self.input_wav: torch.Tensor = torch.zeros( | |
self.extra_frame | |
+ self.crossfade_frame | |
+ self.sola_search_frame | |
+ self.block_frame, | |
device=self.config.device, | |
dtype=torch.float32, | |
) | |
self.input_wav_denoise: torch.Tensor = self.input_wav.clone() | |
self.input_wav_res: torch.Tensor = torch.zeros( | |
160 * self.input_wav.shape[0] // self.zc, | |
device=self.config.device, | |
dtype=torch.float32, | |
) | |
self.rms_buffer: np.ndarray = np.zeros(4 * self.zc, dtype="float32") | |
self.sola_buffer: torch.Tensor = torch.zeros( | |
self.sola_buffer_frame, device=self.config.device, dtype=torch.float32 | |
) | |
self.nr_buffer: torch.Tensor = self.sola_buffer.clone() | |
self.output_buffer: torch.Tensor = self.input_wav.clone() | |
self.skip_head = self.extra_frame // self.zc | |
self.return_length = ( | |
self.block_frame + self.sola_buffer_frame + self.sola_search_frame | |
) // self.zc | |
self.fade_in_window: torch.Tensor = ( | |
torch.sin( | |
0.5 | |
* np.pi | |
* torch.linspace( | |
0.0, | |
1.0, | |
steps=self.sola_buffer_frame, | |
device=self.config.device, | |
dtype=torch.float32, | |
) | |
) | |
** 2 | |
) | |
self.fade_out_window: torch.Tensor = 1 - self.fade_in_window | |
self.resampler = tat.Resample( | |
orig_freq=self.gui_config.samplerate, | |
new_freq=16000, | |
dtype=torch.float32, | |
).to(self.config.device) | |
if self.rvc.tgt_sr != self.gui_config.samplerate: | |
self.resampler2 = tat.Resample( | |
orig_freq=self.rvc.tgt_sr, | |
new_freq=self.gui_config.samplerate, | |
dtype=torch.float32, | |
).to(self.config.device) | |
else: | |
self.resampler2 = None | |
self.tg = TorchGate( | |
sr=self.gui_config.samplerate, n_fft=4 * self.zc, prop_decrease=0.9 | |
).to(self.config.device) | |
self.start_stream() | |
def start_stream(self): | |
global flag_vc | |
if not flag_vc: | |
flag_vc = True | |
if ( | |
"WASAPI" in self.gui_config.sg_hostapi | |
and self.gui_config.sg_wasapi_exclusive | |
): | |
extra_settings = sd.WasapiSettings(exclusive=True) | |
else: | |
extra_settings = None | |
self.stream = sd.Stream( | |
callback=self.audio_callback, | |
blocksize=self.block_frame, | |
samplerate=self.gui_config.samplerate, | |
channels=self.gui_config.channels, | |
dtype="float32", | |
extra_settings=extra_settings, | |
) | |
self.stream.start() | |
def stop_stream(self): | |
global flag_vc | |
if flag_vc: | |
flag_vc = False | |
if self.stream is not None: | |
self.stream.abort() | |
self.stream.close() | |
self.stream = None | |
def audio_callback( | |
self, indata: np.ndarray, outdata: np.ndarray, frames, times, status | |
): | |
""" | |
音频处理 | |
""" | |
global flag_vc | |
start_time = time.perf_counter() | |
indata = librosa.to_mono(indata.T) | |
if self.gui_config.threhold > -60: | |
indata = np.append(self.rms_buffer, indata) | |
rms = librosa.feature.rms( | |
y=indata, frame_length=4 * self.zc, hop_length=self.zc | |
)[:, 2:] | |
self.rms_buffer[:] = indata[-4 * self.zc :] | |
indata = indata[2 * self.zc - self.zc // 2 :] | |
db_threhold = ( | |
librosa.amplitude_to_db(rms, ref=1.0)[0] < self.gui_config.threhold | |
) | |
for i in range(db_threhold.shape[0]): | |
if db_threhold[i]: | |
indata[i * self.zc : (i + 1) * self.zc] = 0 | |
indata = indata[self.zc // 2 :] | |
self.input_wav[: -self.block_frame] = self.input_wav[ | |
self.block_frame : | |
].clone() | |
self.input_wav[-indata.shape[0] :] = torch.from_numpy(indata).to( | |
self.config.device | |
) | |
self.input_wav_res[: -self.block_frame_16k] = self.input_wav_res[ | |
self.block_frame_16k : | |
].clone() | |
# input noise reduction and resampling | |
if self.gui_config.I_noise_reduce: | |
self.input_wav_denoise[: -self.block_frame] = self.input_wav_denoise[ | |
self.block_frame : | |
].clone() | |
input_wav = self.input_wav[-self.sola_buffer_frame - self.block_frame :] | |
input_wav = self.tg( | |
input_wav.unsqueeze(0), self.input_wav.unsqueeze(0) | |
).squeeze(0) | |
input_wav[: self.sola_buffer_frame] *= self.fade_in_window | |
input_wav[: self.sola_buffer_frame] += ( | |
self.nr_buffer * self.fade_out_window | |
) | |
self.input_wav_denoise[-self.block_frame :] = input_wav[ | |
: self.block_frame | |
] | |
self.nr_buffer[:] = input_wav[self.block_frame :] | |
self.input_wav_res[-self.block_frame_16k - 160 :] = self.resampler( | |
self.input_wav_denoise[-self.block_frame - 2 * self.zc :] | |
)[160:] | |
else: | |
self.input_wav_res[-160 * (indata.shape[0] // self.zc + 1) :] = ( | |
self.resampler(self.input_wav[-indata.shape[0] - 2 * self.zc :])[ | |
160: | |
] | |
) | |
# infer | |
if self.function == "vc": | |
infer_wav = self.rvc.infer( | |
self.input_wav_res, | |
self.block_frame_16k, | |
self.skip_head, | |
self.return_length, | |
self.gui_config.f0method, | |
) | |
if self.resampler2 is not None: | |
infer_wav = self.resampler2(infer_wav) | |
elif self.gui_config.I_noise_reduce: | |
infer_wav = self.input_wav_denoise[self.extra_frame :].clone() | |
else: | |
infer_wav = self.input_wav[self.extra_frame :].clone() | |
# output noise reduction | |
if self.gui_config.O_noise_reduce and self.function == "vc": | |
self.output_buffer[: -self.block_frame] = self.output_buffer[ | |
self.block_frame : | |
].clone() | |
self.output_buffer[-self.block_frame :] = infer_wav[-self.block_frame :] | |
infer_wav = self.tg( | |
infer_wav.unsqueeze(0), self.output_buffer.unsqueeze(0) | |
).squeeze(0) | |
# volume envelop mixing | |
if self.gui_config.rms_mix_rate < 1 and self.function == "vc": | |
if self.gui_config.I_noise_reduce: | |
input_wav = self.input_wav_denoise[self.extra_frame :] | |
else: | |
input_wav = self.input_wav[self.extra_frame :] | |
rms1 = librosa.feature.rms( | |
y=input_wav[: infer_wav.shape[0]].cpu().numpy(), | |
frame_length=4 * self.zc, | |
hop_length=self.zc, | |
) | |
rms1 = torch.from_numpy(rms1).to(self.config.device) | |
rms1 = F.interpolate( | |
rms1.unsqueeze(0), | |
size=infer_wav.shape[0] + 1, | |
mode="linear", | |
align_corners=True, | |
)[0, 0, :-1] | |
rms2 = librosa.feature.rms( | |
y=infer_wav[:].cpu().numpy(), | |
frame_length=4 * self.zc, | |
hop_length=self.zc, | |
) | |
rms2 = torch.from_numpy(rms2).to(self.config.device) | |
rms2 = F.interpolate( | |
rms2.unsqueeze(0), | |
size=infer_wav.shape[0] + 1, | |
mode="linear", | |
align_corners=True, | |
)[0, 0, :-1] | |
rms2 = torch.max(rms2, torch.zeros_like(rms2) + 1e-3) | |
infer_wav *= torch.pow( | |
rms1 / rms2, torch.tensor(1 - self.gui_config.rms_mix_rate) | |
) | |
# SOLA algorithm from https://github.com/yxlllc/DDSP-SVC | |
conv_input = infer_wav[ | |
None, None, : self.sola_buffer_frame + self.sola_search_frame | |
] | |
cor_nom = F.conv1d(conv_input, self.sola_buffer[None, None, :]) | |
cor_den = torch.sqrt( | |
F.conv1d( | |
conv_input**2, | |
torch.ones(1, 1, self.sola_buffer_frame, device=self.config.device), | |
) | |
+ 1e-8 | |
) | |
if sys.platform == "darwin": | |
_, sola_offset = torch.max(cor_nom[0, 0] / cor_den[0, 0]) | |
sola_offset = sola_offset.item() | |
else: | |
sola_offset = torch.argmax(cor_nom[0, 0] / cor_den[0, 0]) | |
printt("sola_offset = %d", int(sola_offset)) | |
infer_wav = infer_wav[sola_offset:] | |
if "privateuseone" in str(self.config.device) or not self.gui_config.use_pv: | |
infer_wav[: self.sola_buffer_frame] *= self.fade_in_window | |
infer_wav[: self.sola_buffer_frame] += ( | |
self.sola_buffer * self.fade_out_window | |
) | |
else: | |
infer_wav[: self.sola_buffer_frame] = phase_vocoder( | |
self.sola_buffer, | |
infer_wav[: self.sola_buffer_frame], | |
self.fade_out_window, | |
self.fade_in_window, | |
) | |
self.sola_buffer[:] = infer_wav[ | |
self.block_frame : self.block_frame + self.sola_buffer_frame | |
] | |
outdata[:] = ( | |
infer_wav[: self.block_frame] | |
.repeat(self.gui_config.channels, 1) | |
.t() | |
.cpu() | |
.numpy() | |
) | |
total_time = time.perf_counter() - start_time | |
if flag_vc: | |
self.window["infer_time"].update(int(total_time * 1000)) | |
printt("Infer time: %.2f", total_time) | |
def update_devices(self, hostapi_name=None): | |
"""获取设备列表""" | |
global flag_vc | |
flag_vc = False | |
sd._terminate() | |
sd._initialize() | |
devices = sd.query_devices() | |
hostapis = sd.query_hostapis() | |
for hostapi in hostapis: | |
for device_idx in hostapi["devices"]: | |
devices[device_idx]["hostapi_name"] = hostapi["name"] | |
self.hostapis = [hostapi["name"] for hostapi in hostapis] | |
if hostapi_name not in self.hostapis: | |
hostapi_name = self.hostapis[0] | |
self.input_devices = [ | |
d["name"] | |
for d in devices | |
if d["max_input_channels"] > 0 and d["hostapi_name"] == hostapi_name | |
] | |
self.output_devices = [ | |
d["name"] | |
for d in devices | |
if d["max_output_channels"] > 0 and d["hostapi_name"] == hostapi_name | |
] | |
self.input_devices_indices = [ | |
d["index"] if "index" in d else d["name"] | |
for d in devices | |
if d["max_input_channels"] > 0 and d["hostapi_name"] == hostapi_name | |
] | |
self.output_devices_indices = [ | |
d["index"] if "index" in d else d["name"] | |
for d in devices | |
if d["max_output_channels"] > 0 and d["hostapi_name"] == hostapi_name | |
] | |
def set_devices(self, input_device, output_device): | |
"""设置输出设备""" | |
sd.default.device[0] = self.input_devices_indices[ | |
self.input_devices.index(input_device) | |
] | |
sd.default.device[1] = self.output_devices_indices[ | |
self.output_devices.index(output_device) | |
] | |
printt("Input device: %s:%s", str(sd.default.device[0]), input_device) | |
printt("Output device: %s:%s", str(sd.default.device[1]), output_device) | |
def get_device_samplerate(self): | |
return int( | |
sd.query_devices(device=sd.default.device[0])["default_samplerate"] | |
) | |
def get_device_channels(self): | |
max_input_channels = sd.query_devices(device=sd.default.device[0])[ | |
"max_input_channels" | |
] | |
max_output_channels = sd.query_devices(device=sd.default.device[1])[ | |
"max_output_channels" | |
] | |
return min(max_input_channels, max_output_channels, 2) | |
gui = GUI() | |