Spaces:
Runtime error
Runtime error
import os | |
import sys | |
import traceback | |
import parselmouth | |
now_dir = os.getcwd() | |
sys.path.append(now_dir) | |
import logging | |
import numpy as np | |
import pyworld | |
from infer.lib.audio import load_audio | |
logging.getLogger("numba").setLevel(logging.WARNING) | |
exp_dir = sys.argv[1] | |
import torch_directml | |
device = torch_directml.device(torch_directml.default_device()) | |
f = open("%s/extract_f0_feature.log" % exp_dir, "a+") | |
def printt(strr): | |
print(strr) | |
f.write("%s\n" % strr) | |
f.flush() | |
class FeatureInput(object): | |
def __init__(self, samplerate=16000, hop_size=160): | |
self.fs = samplerate | |
self.hop = hop_size | |
self.f0_bin = 256 | |
self.f0_max = 1100.0 | |
self.f0_min = 50.0 | |
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700) | |
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700) | |
def compute_f0(self, path, f0_method): | |
x = load_audio(path, self.fs) | |
# p_len = x.shape[0] // self.hop | |
if f0_method == "rmvpe": | |
if hasattr(self, "model_rmvpe") == False: | |
from infer.lib.rmvpe import RMVPE | |
print("Loading rmvpe model") | |
self.model_rmvpe = RMVPE( | |
"assets/rmvpe/rmvpe.pt", is_half=False, device=device | |
) | |
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03) | |
return f0 | |
def coarse_f0(self, f0): | |
f0_mel = 1127 * np.log(1 + f0 / 700) | |
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * ( | |
self.f0_bin - 2 | |
) / (self.f0_mel_max - self.f0_mel_min) + 1 | |
# use 0 or 1 | |
f0_mel[f0_mel <= 1] = 1 | |
f0_mel[f0_mel > self.f0_bin - 1] = self.f0_bin - 1 | |
f0_coarse = np.rint(f0_mel).astype(int) | |
assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, ( | |
f0_coarse.max(), | |
f0_coarse.min(), | |
) | |
return f0_coarse | |
def go(self, paths, f0_method): | |
if len(paths) == 0: | |
printt("no-f0-todo") | |
else: | |
printt("todo-f0-%s" % len(paths)) | |
n = max(len(paths) // 5, 1) # 每个进程最多打印5条 | |
for idx, (inp_path, opt_path1, opt_path2) in enumerate(paths): | |
try: | |
if idx % n == 0: | |
printt("f0ing,now-%s,all-%s,-%s" % (idx, len(paths), inp_path)) | |
if ( | |
os.path.exists(opt_path1 + ".npy") == True | |
and os.path.exists(opt_path2 + ".npy") == True | |
): | |
continue | |
featur_pit = self.compute_f0(inp_path, f0_method) | |
np.save( | |
opt_path2, | |
featur_pit, | |
allow_pickle=False, | |
) # nsf | |
coarse_pit = self.coarse_f0(featur_pit) | |
np.save( | |
opt_path1, | |
coarse_pit, | |
allow_pickle=False, | |
) # ori | |
except: | |
printt("f0fail-%s-%s-%s" % (idx, inp_path, traceback.format_exc())) | |
if __name__ == "__main__": | |
# exp_dir=r"E:\codes\py39\dataset\mi-test" | |
# n_p=16 | |
# f = open("%s/log_extract_f0.log"%exp_dir, "w") | |
printt(" ".join(sys.argv)) | |
featureInput = FeatureInput() | |
paths = [] | |
inp_root = "%s/1_16k_wavs" % (exp_dir) | |
opt_root1 = "%s/2a_f0" % (exp_dir) | |
opt_root2 = "%s/2b-f0nsf" % (exp_dir) | |
os.makedirs(opt_root1, exist_ok=True) | |
os.makedirs(opt_root2, exist_ok=True) | |
for name in sorted(list(os.listdir(inp_root))): | |
inp_path = "%s/%s" % (inp_root, name) | |
if "spec" in inp_path: | |
continue | |
opt_path1 = "%s/%s" % (opt_root1, name) | |
opt_path2 = "%s/%s" % (opt_root2, name) | |
paths.append([inp_path, opt_path1, opt_path2]) | |
try: | |
featureInput.go(paths, "rmvpe") | |
except: | |
printt("f0_all_fail-%s" % (traceback.format_exc())) | |
# ps = [] | |
# for i in range(n_p): | |
# p = Process( | |
# target=featureInput.go, | |
# args=( | |
# paths[i::n_p], | |
# f0method, | |
# ), | |
# ) | |
# ps.append(p) | |
# p.start() | |
# for i in range(n_p): | |
# ps[i].join() | |