Spaces:
Sleeping
Sleeping
import streamlit as st | |
import streamlit as st | |
import pandas as pd | |
import script.functions as fn | |
import plotly.express as px | |
import matplotlib.pyplot as plt | |
# import text_proc in script folder | |
import script.text_proc as tp | |
from sentence_transformers import SentenceTransformer | |
st.set_page_config( | |
page_title="twitter sentiment analysis", | |
page_icon="π", | |
) | |
st.sidebar.markdown("π Twitter Sentiment Analysis App") | |
# Load data | |
# add tiwtter logo inside title | |
st.markdown("<h1 style='text-align: center;'>π Twitter Sentiment Analysis App</h1>", unsafe_allow_html=True) | |
st.write("Aplikasi sederhana untuk melakukan analisis sentimen terhadap tweet yang diinputkan dan mengekstrak topik dari setiap sentimen.") | |
# streamlit selectbox simple and advanced | |
sb1,sb2 = st.columns([2,4]) | |
with sb1: | |
option = st.selectbox('Pilih Mode Pencarian',('Simple','Advanced')) | |
with sb2: | |
option_model = st.selectbox('Pilih Model',("IndoBERT (Accurate,Slow)",'Naive Bayes','Logistic Regression (Less Accurate,Fast)','XGBoost','Catboost','SVM','Random Forest')) | |
if option == 'Simple': | |
# create col1 and col2 | |
col1, col2 = st.columns([3,2]) | |
with col1: | |
input = st.text_input("Masukkan User/Hastag", "@traveloka") | |
with col2: | |
length = st.number_input("Jumlah Tweet", 10, 500, 100) | |
else : | |
col1, col2 = st.columns([3,1]) | |
with col1: | |
input = st.text_input("Masukkan Parameter Pencarian", "(to:@traveloka AND @traveloka) -filter:links filter:replies lang:id") | |
with col2: | |
length = st.number_input("Jumlah Tweet", 10, 500, 100) | |
st.caption("anda bisa menggunakan parameter pencarian yang lebih spesifik, parameter ini sama dengan paremeter pencarian di twitter") | |
submit = st.button("πCari Tweet") | |
st.caption("semakin banyak tweet yang diambil maka semakin lama proses analisis sentimen") | |
if submit: | |
with st.spinner('Mengambil data dari twitter... (1/2)'): | |
df = fn.get_tweets(input, length, option) | |
with st.spinner('Melakukan Prediksi Sentimen... (2/2)'): | |
df = fn.get_sentiment(df,option_model) | |
df.to_csv('assets/data.csv',index=False) | |
# plot | |
st.write("<b>Preview Dataset</b>",unsafe_allow_html=True) | |
def color_sentiment(val): | |
color_dict = {"positif": "#00cc96", "negatif": "#ef553b","netral": "#636efa"} | |
return f'color: {color_dict[val]}' | |
st.dataframe(df.style.applymap(color_sentiment, subset=['sentiment']),use_container_width=True,height = 200) | |
# st.dataframe(df,use_container_width=True,height = 200) | |
st.write ("Jumlah Tweet: ",df.shape[0]) | |
# download datasets | |
st.write("<h3>π Analisis Sentimen</h3>",unsafe_allow_html=True) | |
col_fig1, col_fig2 = st.columns([4,3]) | |
with col_fig1: | |
with st.spinner('Sedang Membuat Grafik...'): | |
st.write("<b>Jumlah Tweet Tiap Sentiment</b>",unsafe_allow_html=True) | |
fig_1 = fn.get_bar_chart(df) | |
st.plotly_chart(fig_1,use_container_width=True,theme="streamlit") | |
with col_fig2: | |
st.write("<b>Wordcloud Tiap Sentiment</b>",unsafe_allow_html=True) | |
tab1,tab2,tab3 = st.tabs(["π negatif","π netral","π positif"]) | |
with tab1: | |
wordcloud_pos = tp.get_wordcloud(df,"negatif") | |
fig = plt.figure(figsize=(10, 5)) | |
plt.imshow(wordcloud_pos, interpolation="bilinear") | |
plt.axis("off") | |
st.pyplot(fig) | |
with tab2: | |
wordcloud_neg = tp.get_wordcloud(df,"netral") | |
fig = plt.figure(figsize=(10, 5)) | |
plt.imshow(wordcloud_neg, interpolation="bilinear") | |
plt.axis("off") | |
st.pyplot(fig) | |
with tab3: | |
wordcloud_net = tp.get_wordcloud(df,"positif") | |
fig = plt.figure(figsize=(10, 5)) | |
plt.imshow(wordcloud_net, interpolation="bilinear") | |
plt.axis("off") | |
st.pyplot(fig) | |
st.write("<h3>β¨ Sentiment Clustering</h3>",unsafe_allow_html=True) | |
def load_sentence_model(): | |
embedding_model = SentenceTransformer('sentence_bert') | |
return embedding_model | |
embedding_model = load_sentence_model() | |
tab4,tab5,tab6 = st.tabs(["π negatif","π netral","π positif"]) | |
with tab4: | |
if len(df[df["sentiment"]=="negatif"]) < 11: | |
st.write("Tweet Terlalu Sedikit, Tidak dapat melakukan clustering") | |
st.write(df[df["sentiment"]=="negatif"]) | |
else: | |
with st.spinner('Sedang Membuat Grafik...(1/2)'): | |
text,data,fig = tp.plot_text(df,"negatif",embedding_model) | |
st.plotly_chart(fig,use_container_width=True,theme=None) | |
with st.spinner('Sedang Mengekstrak Topik... (2/2)'): | |
fig,topic_modelling = tp.topic_modelling(text,data) | |
st.plotly_chart(fig,use_container_width=True,theme="streamlit") | |
with tab5: | |
if len(df[df["sentiment"]=="netral"]) < 11: | |
st.write("Tweet Terlalu Sedikit, Tidak dapat melakukan clustering") | |
st.write(df[df["sentiment"]=="netral"]) | |
else: | |
with st.spinner('Sedang Membuat Grafik... (1/2)'): | |
text,data,fig = tp.plot_text(df,"netral",embedding_model) | |
st.plotly_chart(fig,use_container_width=True,theme=None) | |
with st.spinner('Sedang Mengekstrak Topik... (2/2)'): | |
fig,topic_modelling = tp.topic_modelling(text,data) | |
st.plotly_chart(fig,use_container_width=True,theme="streamlit") | |
with tab6: | |
if len(df[df["sentiment"]=="positif"]) < 11: | |
st.write("Tweet Terlalu Sedikit, Tidak dapat melakukan clustering") | |
st.write(df[df["sentiment"]=="positif"]) | |
else: | |
with st.spinner('Sedang Membuat Grafik...(1/2)'): | |
text,data,fig = tp.plot_text(df,"positif",embedding_model) | |
st.plotly_chart(fig,use_container_width=True,theme=None) | |
with st.spinner('Sedang Mengekstrak Topik... (2/2)'): | |
fig,topic_modelling = tp.topic_modelling(text,data) | |
st.plotly_chart(fig,use_container_width=True,theme="streamlit") | |