czd358121692's picture
add randomizer to sample images
e58a127 verified
import spaces
import os
import shutil
import gradio as gr
import torch
import numpy as np
from PIL import Image
import torchaudio
from einops import rearrange
import psutil
import humanize
from transformers import (
AutoProcessor,
AutoModelForVision2Seq,
pipeline
)
from huggingface_hub import scan_cache_dir
from stable_audio_tools import get_pretrained_model
from stable_audio_tools.inference.generation import generate_diffusion_cond
import random
CACHE_ROOT = '/tmp'
os.environ['HF_HOME'] = CACHE_ROOT
os.environ['HUGGINGFACE_HUB_CACHE'] = os.path.join(CACHE_ROOT, 'hub')
os.environ['XDG_CACHE_HOME'] = os.path.join(CACHE_ROOT, 'cache')
# Global model variables
kosmos_model = None
kosmos_processor = None
zephyr_pipe = None
audio_model = None
audio_config = None
def initialize_models():
check_disk_space()
global kosmos_model, kosmos_processor, zephyr_pipe, audio_model, audio_config
try:
print("Loading Kosmos-2...")
kosmos_model = AutoModelForVision2Seq.from_pretrained(
"microsoft/kosmos-2-patch14-224",
device_map="auto",
torch_dtype=torch.float16
)
kosmos_processor = AutoProcessor.from_pretrained(
"microsoft/kosmos-2-patch14-224")
if torch.cuda.is_available():
kosmos_model = kosmos_model.to("cuda")
except Exception as e:
print(f"Error loading Kosmos-2: {e}")
raise
check_disk_space()
try:
print("Loading Zephyr...")
zephyr_pipe = pipeline(
"text-generation",
model="HuggingFaceH4/zephyr-7b-beta",
torch_dtype=torch.bfloat16,
device_map="auto"
)
except Exception as e:
print(f"Error loading Zephyr: {e}")
raise
check_disk_space()
try:
print("Loading Stable Audio...")
audio_model, audio_config = get_pretrained_model("stabilityai/stable-audio-open-1.0")
if torch.cuda.is_available():
audio_model = audio_model.to("cuda")
except Exception as e:
print(f"Error loading Stable Audio: {e}")
raise
check_disk_space()
def get_caption(image_in):
if not image_in:
raise gr.Error("Please provide an image")
try:
check_disk_space()
# Convert image to PIL if needed
if isinstance(image_in, str):
image = Image.open(image_in)
elif isinstance(image_in, np.ndarray):
image = Image.fromarray(image_in)
if image.mode != "RGB":
image = image.convert("RGB")
prompt = "<grounding>Describe the visual elements in detail with rich adjectives and without names:"
inputs = kosmos_processor(text=prompt, images=image, return_tensors="pt")
device = next(kosmos_model.parameters()).device
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
generated_ids = kosmos_model.generate(
pixel_values=inputs["pixel_values"],
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
image_embeds_position_mask=inputs["image_embeds_position_mask"],
max_new_tokens=128,
)
generated_text = kosmos_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
processed_text, _ = kosmos_processor.post_process_generation(generated_text)
# Clean up output
for prefix in ["Describe the visual elements in detail with rich adjectives and without names", "An image of", "<grounding>"]:
processed_text = processed_text.replace(prefix, "").strip()
return processed_text
except Exception as e:
# raise gr.Error(f"Image caption generation failed: {str(e)}")
return "A curved titanium facade reflecting sunlight with flowing organic forms" # fallback sample
# Continuing from previous code...
def get_musical_prompt(user_prompt):
if not user_prompt:
raise gr.Error("No image caption provided")
try:
check_disk_space()
standard_sys = """
You are a musician AI who specializes in translating architectural space viusal descriptions into musical prompts. Your job is to create concise musical prompts that capture the essence of it.
Consider these elements in your composition:
- Spatial Experience: expansive/intimate spaces, layered forms, acoustical qualities
- Materials & Textures: metallic, glass, concrete translated into instrumental textures
- Musical Elements: blend of classical structure and jazz improvisation
- Orchestration: symphonic layers, solo instruments, or ensemble variations
- Soundscapes: environmental depth and spatial audio qualities
Do not mention Gehry, Disney, Bilbao directly. Be poetic, creative, melodic, harmonious, rhythmic.
Respond immediately with a single musical prompt. No explanation, just the musical description.
Examples:
Input: "A curved titanium facade reflecting sunlight with flowing organic forms"
Output: "Fluid jazz piano with shimmering orchestral textures, metallic percussion accents, and expansive reverb creating architectural depth"
Input: "A geometric glass atrium with intersecting angular planes"
Output: "Crystalline minimalist composition with layered string harmonies and precise rhythmic structures, emphasizing spatial transparency"
"""
instruction = f"""
<|system|>
{standard_sys}</s>
<|user|>
{user_prompt}</s>
"""
outputs = zephyr_pipe(
instruction.strip(),
max_new_tokens=256,
do_sample=True,
temperature=0.75,
top_k=50,
top_p=0.92
)
musical_prompt = outputs[0]["generated_text"]
# Clean system message and tokens
cleaned_prompt = musical_prompt.replace("<|system|>", "").replace("</s>", "").replace("<|user|>", "").replace("<|assistant|>", "").replace("Output:", "")
lines = cleaned_prompt.split('\n')
relevant_lines = [line.strip() for line in lines
if line.strip() and
not line.startswith('-') and
not line.startswith('Example') and
not line.startswith('Instructions') and
not line.startswith('Consider') and
not line.startswith('Incorporate')]
if relevant_lines:
final_prompt = relevant_lines[-1].strip()
if len(final_prompt) >= 10:
return final_prompt
raise ValueError("Could not extract valid musical prompt")
except Exception as e:
print(f"Error in get_musical_prompt: {str(e)}")
final_prompt = "Ambient orchestral composition with piano and strings, creating a contemplative atmosphere"
return final_prompt
def get_stable_audio_open(prompt, seconds_total=47, steps=100, cfg_scale=7):
try:
torch.cuda.empty_cache() # Clear GPU memory before generation
check_disk_space()
device = "cuda" if torch.cuda.is_available() else "cpu"
sample_rate = audio_config["sample_rate"]
sample_size = audio_config["sample_size"]
# Set up conditioning
conditioning = [{
"prompt": prompt,
"seconds_start": 0,
"seconds_total": seconds_total
}]
# Generate audio
output = generate_diffusion_cond(
audio_model,
steps=steps,
cfg_scale=cfg_scale,
conditioning=conditioning,
sample_size=sample_size,
sigma_min=0.3,
sigma_max=500,
sampler_type="dpmpp-3m-sde",
device=device
)
output = rearrange(output, "b d n -> d (b n)")
output = output.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
# Save to temporary file
output_path = os.path.join(CACHE_ROOT, f"output_{os.urandom(8).hex()}.wav")
torchaudio.save(output_path, output, sample_rate)
return output_path
except Exception as e:
torch.cuda.empty_cache() # Clear GPU memory on error
raise gr.Error(f"Music generation failed: {str(e)}")
def check_api():
try:
if all([kosmos_model, kosmos_processor, zephyr_pipe, audio_model, audio_config]):
return "Orchestra ready. 🎹 👁️ 🎼"
return "Orchestra is tuning..."
except Exception:
return "Orchestra is tuning..."
# Rest of the utility functions remain the same
def get_storage_info():
disk_usage = psutil.disk_usage('/tmp')
used = humanize.naturalsize(disk_usage.used)
total = humanize.naturalsize(disk_usage.total)
percent = disk_usage.percent
return f"Storage: {used}/{total} ({percent}% used)"
def check_disk_space(min_gb=10):
"""Check if there's enough disk space (default: 10GB)"""
disk_usage = psutil.disk_usage('/')
gb_free = disk_usage.free / (1024 * 1024 * 1024)
if gb_free < min_gb:
print("Disk space GB free: " + str(int(gb_free)))
raise RuntimeError(f"Low disk space: {int(gb_free)}GB free, need {min_gb}GB")
else:
print("Disk space GB free: " + str(int(gb_free)))
return True
def smart_cleanup():
try:
cache_info = scan_cache_dir()
seen_models = {}
for repo in cache_info.repos:
model_id = repo.repo_id
if model_id not in seen_models:
seen_models[model_id] = []
seen_models[model_id].append(repo)
for model_id, repos in seen_models.items():
if len(repos) > 1:
repos.sort(key=lambda x: x.last_modified, reverse=True)
for repo in repos[1:]:
shutil.rmtree(repo.repo_path)
print(f"Removed duplicate cache for {model_id}")
return get_storage_info()
except Exception as e:
print(f"Error during cleanup: {e}")
return "Cleanup error occurred"
def get_image_examples():
image_dir = "images"
image_extensions = ['.jpg', '.jpeg', '.png']
examples = []
if not os.path.exists(image_dir):
print(f"Warning: Image directory '{image_dir}' not found")
return []
for filename in os.listdir(image_dir):
if any(filename.lower().endswith(ext) for ext in image_extensions):
examples.append([os.path.join(image_dir, filename)])
random.shuffle(examples)
return examples
@spaces.GPU(enable_queue=True)
def infer(image_in, api_status):
if image_in is None:
raise gr.Error("Please provide an image of architecture")
if api_status == "Orchestra is tuning. Please refresh the webpage.":
raise gr.Error("The model is still tuning, please try again later")
try:
gr.Info("🎭 Finding a poetry in form and light...")
user_prompt = get_caption(image_in)
gr.Info("🎼 Weaving into melody...")
musical_prompt = get_musical_prompt(user_prompt)
gr.Info("🎻 Breathing life into notes...")
music_o = get_stable_audio_open(musical_prompt)
torch.cuda.empty_cache() # Clear GPU memory after generation
return gr.update(value=musical_prompt, interactive=True), gr.update(visible=True), music_o
except Exception as e:
torch.cuda.empty_cache()
raise gr.Error(f"Generation failed: {str(e)}")
def retry(caption):
musical_prompt = caption
gr.Info("🎹 Refreshing with a new vibe...")
music_o = get_stable_audio_open(musical_prompt)
return music_o
# UI Definition
demo_title = "Musical Toy for Frank"
description = "A humble attempt to hear Architecture through Music"
css = """
#col-container {
margin: 0 auto;
max-width: 980px;
text-align: left;
}
#inspi-prompt textarea {
font-size: 20px;
line-height: 24px;
font-weight: 600;
}
"""
with gr.Blocks(css=css) as demo:
# UI layout remains exactly the same as in your original code
with gr.Column(elem_id="col-container"):
gr.HTML(f"""
<h2 style="text-align: center;">{demo_title}</h2>
<p style="text-align: center;">{description}</p>
""")
with gr.Row():
with gr.Column():
image_in = gr.Image(
label="Inspire us:",
type="filepath",
elem_id="image-in"
)
gr.Examples(
examples=get_image_examples(),
fn=infer,
inputs=[image_in],
examples_per_page=5,
label="♪ ♪ ..."
)
submit_btn = gr.Button("Listen to it...")
with gr.Column():
check_status = gr.Textbox(
label="Status",
interactive=False,
value=check_api()
)
caption = gr.Textbox(
label="Explanation & Inspiration...",
interactive=False,
elem_id="inspi-prompt"
)
retry_btn = gr.Button("🎲", visible=False)
result = gr.Audio(
label="Music",
autoplay = True
)
# Credits section
gr.HTML("""
<div style="margin-top: 40px; padding: 20px; border-top: 1px solid #ddd;">
<h3 style="text-align: center;">Credits & Acknowledgments</h3>
<h4>Architecture</h4>
<p>Frank O Gehry, Gehry Partners LLP and Gehry Tech team for pushing the boundaries of form and space for humanity.</p>
<h4>Technologies</h4>
<ul>
<li>Music Generation: <a href="https://huggingface.co/spaces/harmonai/stable-audio-public">Stable Audio Open</a> by STABILITY AI LTD</li>
<li>Image Understanding: <a href="https://huggingface.co/microsoft/kosmos-2">Kosmos-2</a> by Microsoft</li>
<li>Language Model: Zephyr by Hugging Face</li>
<li>Affordable Online Hosting Platform & Computational Resources by Hugging Face</li>
</ul>
<h4>Contributors</h4>
<ul>
<li>Architects, Engineers & Consultants who bring these visions to life</li>
<li>Contractor teams, craftspeople, and workers who materialize these dreams</li>
<li>Photographers who capture and share these architectural moments to general public online</li>
<li>Musicians and composers whose work inspires our audio training behind the scenes for generations</li>
</ul>
<p style="text-align: center; margin-top: 20px; font-size: 0.9em;">
This project stands on the shoulders of countless individuals who contribute to the intersection of architecture, technology, and broader arts.
<br>Special thanks to all the open-source communities and researchers making these technologies accessible.
</p>
</div>
""")
# Event handlers
demo.load(
fn=check_api,
outputs=check_status,
)
retry_btn.click(
fn=retry,
inputs=[caption],
outputs=[result]
)
submit_btn.click(
fn=infer,
inputs=[
image_in,
check_status
],
outputs=[
caption,
retry_btn,
result
]
)
with gr.Column():
storage_info = gr.Textbox(label="Storage Info", value=get_storage_info())
cleanup_btn = gr.Button("Smart Cleanup")
cleanup_btn.click(
fn=smart_cleanup,
outputs=storage_info
)
if __name__ == "__main__":
print("Initializing models...")
initialize_models()
print("Models initialized successfully")
demo.queue(max_size=16).launch(
show_api=False,
show_error=True,
server_name="0.0.0.0",
server_port=7860,
)