Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
"""app.ipynb | |
Automatically generated by Colaboratory. | |
Original file is located at | |
https://colab.research.google.com/drive/143eWt9oxUTcF59OBiVybOgKXJB3QOTsK | |
""" | |
# Beginning of Unit 7 | |
from transformers.models.markuplm.tokenization_markuplm import MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING | |
import torch, torchaudio | |
from transformers import WhisperProcessor, WhisperForConditionalGeneration | |
import sentencepiece | |
from transformers import MarianMTModel, MarianTokenizer | |
from datasets import load_dataset | |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan | |
from IPython.display import Audio | |
import numpy as np | |
target_dtype = np.int16 | |
max_range = np.iinfo(target_dtype).max | |
# Load Spanish Audio | |
def transcribe(audio): | |
model_id_asr = "openai/whisper-small" | |
processor_asr = WhisperProcessor.from_pretrained(model_id_asr) | |
model_asr = WhisperForConditionalGeneration.from_pretrained(model_id_asr) | |
model_asr.config.forced_decoder_ids = None | |
input_features = processor_asr(audio["audio"]["array"], sampling_rate=audio["audio"]["sampling_rate"], return_tensors="pt").input_features | |
predicted_ids = model_asr.generate(input_features) | |
# decode token ids to text | |
transcription = processor_asr.batch_decode(predicted_ids, skip_special_tokens=True) | |
return transcription[0] | |
# Run inference on Spanish Audio vector | |
def translate(text): | |
model_id_mt = "Helsinki-NLP/opus-mt-es-fr" | |
tokenizer_mt = MarianTokenizer.from_pretrained(model_id_mt) | |
model_mt = MarianMTModel.from_pretrained(model_id_mt) | |
# Tokenize the input text | |
input_ids = tokenizer_mt.encode(text, return_tensors="pt") | |
# Generate translation | |
with torch.no_grad(): | |
translated_ids = model_mt.generate(input_ids) | |
# Decode the translated text | |
translated_text = tokenizer_mt.decode(translated_ids[0], skip_special_tokens=True) | |
return translated_text | |
def synthesise(text): | |
processor_tts = SpeechT5Processor.from_pretrained("crowbarmassage/speecht5_finetuned_voxpopuli_fr") | |
model_tts = SpeechT5ForTextToSpeech.from_pretrained("crowbarmassage/speecht5_finetuned_voxpopuli_fr") | |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") | |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") | |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) | |
# Load your dataset from Hugging Face | |
#embeddings_dataset = load_dataset("crowbarmassage/MAEmbed") | |
#print(embeddings_dataset.features) | |
#print(embeddings_dataset[0]) | |
# Extract the embedding (assuming it's in a column named 'embedding') | |
# Note: Adjust the index [0] if your embedding is at a different position in the dataset. | |
#embedding_array = embeddings_dataset[0]['embedding'] | |
# Convert the embedding to a PyTorch tensor and add a batch dimension | |
#speaker_embeddings = torch.tensor(embedding_array).unsqueeze(0) | |
print(speaker_embeddings) | |
print(type(speaker_embeddings)) | |
inputs = processor_tts(text=text, return_tensors="pt") | |
speech = model_tts.generate_speech( | |
inputs["input_ids"], speaker_embeddings, vocoder=vocoder | |
) | |
print(speech) | |
print(len(speech)) | |
print(torch.norm(speech)) | |
return speech | |
def speech_to_speech_translation(audio_filepath): | |
# Load the audio file | |
waveform, sampling_rate = torchaudio.load(audio_filepath) | |
if sampling_rate != 16000: | |
resampler = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=16000) | |
waveform = resampler(waveform) | |
sampling_rate = 16000 | |
# Convert the waveform to a numpy array and construct the expected dictionary format | |
audio_dict = { | |
"audio": { | |
"array": waveform.numpy(), | |
"sampling_rate": sampling_rate | |
} | |
} | |
transcribed_text = transcribe(audio_dict) | |
translated_text = translate(transcribed_text) | |
synthesised_speech = synthesise(translated_text) | |
#print(transcribed_text) | |
#print(translated_text) | |
#print(synthesised_speech) | |
#print(torch.min(synthesised_speech), torch.max(synthesised_speech)) | |
synthesised_speech = (synthesised_speech * 32767).numpy().astype(np.int16) | |
#print(synthesised_speech) | |
#print(np.min(synthesised_speech), np.max(synthesised_speech)) | |
return 16000, synthesised_speech | |
import gradio as gr | |
demo = gr.Blocks() | |
mic_translate = gr.Interface( | |
fn=speech_to_speech_translation, | |
inputs=gr.Audio(source="microphone", type="filepath"), | |
outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
) | |
file_translate = gr.Interface( | |
fn=speech_to_speech_translation, | |
inputs=gr.Audio(source="upload", type="filepath"), | |
outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
) | |
with demo: | |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) | |
demo.launch(debug=True, share=False) |