convosim-ui / models /databricks /instruction_memory.py
ivnban27-ctl's picture
v0.5 (#4)
20b3b4a verified
raw
history blame
4.58 kB
import os
import sys
from typing import Any, Dict, List, Sequence, Union
from langchain.memory.chat_memory import BaseChatMemory
from langchain.schema.messages import (
AIMessage,
BaseMessage,
ChatMessage,
FunctionMessage,
HumanMessage,
SystemMessage,
)
# Hacky way of importing other directory modules.
# This is done this way instead of src.evaluation.postprocessing_utils
# Because this file is used for inference where there is not the same folder structure
sys.path.append(os.path.join(os.path.dirname(__file__), "..", "evaluation"))
def get_buffer_string_inst(
messages: Sequence[BaseMessage],
human_prefix: str = "[INST]",
ai_prefix: str = "[/INST]",
) -> str:
"""Convert sequence of Messages to strings and concatenate them into one string.
Args:
messages: Messages to be converted to strings.
human_prefix: The prefix to prepend to contents of HumanMessages.
ai_prefix: THe prefix to prepend to contents of AIMessages.
Returns:
A single string concatenation of all input messages.
Example:
.. code-block:: python
from langchain.schema import AIMessage, HumanMessage
messages = [
HumanMessage(content="Hi, how are you?"),
AIMessage(content="Good, how are you?"),
]
get_buffer_string(messages)
# -> "Human: Hi, how are you?\nAI: Good, how are you?"
"""
string_messages = []
for m in messages:
if isinstance(m, HumanMessage):
role = human_prefix
elif isinstance(m, AIMessage):
role = ai_prefix
elif isinstance(m, SystemMessage):
role = "System"
elif isinstance(m, FunctionMessage):
role = "Function"
elif isinstance(m, ChatMessage):
role = m.role
else:
raise ValueError(f"Got unsupported message type: {m}")
message = f"{role} {m.content}"
if isinstance(m, AIMessage) and "function_call" in m.additional_kwargs:
message += f"{m.additional_kwargs['function_call']}"
string_messages.append(message)
return " ".join(string_messages)
class CustomBufferInstructionMemory(BaseChatMemory):
memory_key: str = "chat_history"
input_key: str = "input"
ai_prefix: str = "[/INST]"
human_prefix: str = "[INST]"
name: str = "Kit"
@property
def buffer(self) -> Union[str, List[BaseMessage]]:
"""String buffer of memory."""
return self.buffer_as_messages if self.return_messages else self.buffer_as_str
@property
def buffer_as_str(self) -> str:
"""Exposes the buffer as a string in case return_messages is True."""
messages = self.chat_memory.messages
return get_buffer_string_inst(
messages,
human_prefix=self.human_prefix,
ai_prefix=self.ai_prefix,
)
@property
def buffer_as_messages(self) -> List[BaseMessage]:
"""Exposes the buffer as a list of messages in case return_messages is False."""
return self.chat_memory.messages
@property
def memory_variables(self) -> List[str]:
"""Define the variables we are providing to the prompt."""
return [self.memory_key]
def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]:
"""Load the memory variables, in this case the entity key."""
# Return combined information about entities to put into context.
return {self.memory_key: self.buffer}
def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None:
"""Save context from this conversation to buffer."""
input_str, output_str = self._get_input_output(inputs, outputs)
self.chat_memory.add_user_message(input_str)
self.chat_memory.add_ai_message(output_str)
class CustomBufferWindowInstructionMemory(CustomBufferInstructionMemory):
k: int = 5
@property
def buffer_as_str(self) -> str:
"""Exposes the buffer as a string in case return_messages is True."""
messages = self.chat_memory.messages[-self.k * 2 :] if self.k > 0 else []
return get_buffer_string_inst(
messages,
human_prefix=self.human_prefix,
ai_prefix=self.ai_prefix,
)
@property
def buffer_as_messages(self) -> List[BaseMessage]:
"""Exposes the buffer as a list of messages in case return_messages is False."""
return self.chat_memory.messages[-self.k * 2 :] if self.k > 0 else []