Spaces:
Running
Running
import os | |
import streamlit as st | |
from streamlit.logger import get_logger | |
from langchain.schema.messages import HumanMessage | |
from utils.mongo_utils import get_db_client | |
from utils.app_utils import create_memory_add_initial_message, get_random_name, DEFAULT_NAMES_DF | |
from utils.memory_utils import clear_memory, push_convo2db | |
from utils.chain_utils import get_chain, custom_chain_predict | |
from app_config import ISSUES, SOURCES, source2label, issue2label, MAX_MSG_COUNT, WARN_MSG_COUT | |
logger = get_logger(__name__) | |
openai_api_key = os.environ['OPENAI_API_KEY'] | |
temperature = 0.8 | |
# username = "barb-chase" #"ivnban-ctl" | |
if "sent_messages" not in st.session_state: | |
st.session_state['sent_messages'] = 0 | |
if "total_messages" not in st.session_state: | |
st.session_state['total_messages'] = 0 | |
if "issue" not in st.session_state: | |
st.session_state['issue'] = ISSUES[0] | |
if 'previous_source' not in st.session_state: | |
st.session_state['previous_source'] = SOURCES[0] | |
if 'db_client' not in st.session_state: | |
st.session_state["db_client"] = get_db_client() | |
if 'texter_name' not in st.session_state: | |
st.session_state["texter_name"] = get_random_name(names_df=DEFAULT_NAMES_DF) | |
logger.debug(f"texter name is {st.session_state['texter_name']}") | |
memories = {'memory':{"issue": st.session_state['issue'], "source": st.session_state['previous_source']}} | |
with st.sidebar: | |
username = st.text_input("Username", value='Jasmyn', max_chars=30) | |
if 'counselor_name' not in st.session_state: | |
st.session_state["counselor_name"] = username #get_random_name(names_df=DEFAULT_NAMES_DF) | |
# temperature = st.slider("Temperature", 0., 1., value=0.8, step=0.1) | |
issue = st.selectbox("Select a Scenario", ISSUES, index=0, format_func=issue2label, | |
on_change=clear_memory, kwargs={"memories":memories, "username":username, "language":"English"} | |
) | |
supported_languages = ['en', "es"] if issue == "Anxiety" else ['en'] | |
language = st.selectbox("Select a Language", supported_languages, index=0, | |
format_func=lambda x: "English" if x=="en" else "Spanish", | |
on_change=clear_memory, kwargs={"memories":memories, "username":username, "language":"English"} | |
) | |
source = st.selectbox("Select a source Model A", SOURCES, index=0, | |
format_func=source2label, | |
) | |
changed_source = any([ | |
st.session_state['previous_source'] != source, | |
st.session_state['issue'] != issue, | |
st.session_state['counselor_name'] != username, | |
]) | |
if changed_source: | |
st.session_state["counselor_name"] = username | |
st.session_state["texter_name"] = get_random_name(names_df=DEFAULT_NAMES_DF) | |
logger.debug(f"texter name is {st.session_state['texter_name']}") | |
st.session_state['previous_source'] = source | |
st.session_state['issue'] = issue | |
st.session_state['sent_messages'] = 0 | |
st.session_state['total_messages'] = 0 | |
create_memory_add_initial_message(memories, | |
issue, | |
language, | |
changed_source=changed_source, | |
counselor_name=st.session_state["counselor_name"], | |
texter_name=st.session_state["texter_name"]) | |
st.session_state['previous_source'] = source | |
memoryA = st.session_state[list(memories.keys())[0]] | |
# issue only without "." marker for model compatibility | |
llm_chain, stopper = get_chain(issue, language, source, memoryA, temperature, texter_name=st.session_state["texter_name"]) | |
st.title("💬 Simulator") | |
st.session_state['total_messages'] = len(memoryA.chat_memory.messages) | |
for msg in memoryA.buffer_as_messages: | |
role = "user" if type(msg) == HumanMessage else "assistant" | |
st.chat_message(role).write(msg.content) | |
if prompt := st.chat_input(disabled=st.session_state['total_messages'] > MAX_MSG_COUNT - 4): #account for next interaction | |
st.session_state['sent_messages'] += 1 | |
st.chat_message("user").write(prompt) | |
if 'convo_id' not in st.session_state: | |
push_convo2db(memories, username, language) | |
responses = custom_chain_predict(llm_chain, prompt, stopper) | |
# responses = llm_chain.predict(input=prompt, stop=stopper) | |
# response = update_memory_completion(prompt, st.session_state["memory"], OA_engine, temperature) | |
for response in responses: | |
st.chat_message("assistant").write(response) | |
st.session_state['total_messages'] = len(memoryA.chat_memory.messages) | |
if st.session_state['total_messages'] >= MAX_MSG_COUNT: | |
st.toast(f"Total of {MAX_MSG_COUNT} Messages reached. Conversation Ended", icon=":material/verified:") | |
elif st.session_state['total_messages'] >= WARN_MSG_COUT: | |
st.toast(f"The conversation will end at {MAX_MSG_COUNT} Total Messages ", icon=":material/warning:") | |
with st.sidebar: | |
st.markdown(f"### Total Sent Messages: :red[**{st.session_state['sent_messages']}**]") | |
st.markdown(f"### Total Messages: :red[**{st.session_state['total_messages']}**]") |