File size: 2,466 Bytes
5832f57
 
0f381ca
5832f57
0f381ca
 
 
5832f57
0f381ca
5832f57
0f381ca
 
 
 
 
 
5832f57
 
0f381ca
5832f57
0f381ca
 
5832f57
 
 
0f381ca
5832f57
 
0f381ca
 
5832f57
 
0f381ca
 
 
 
 
 
5832f57
 
 
0f381ca
5832f57
 
 
 
0f381ca
 
 
5832f57
0f381ca
5832f57
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import os
import streamlit as st
from streamlit.logger import get_logger
from langchain.schema.messages import HumanMessage
from mongo_utils import get_db_client
from app_utils import create_memory_add_initial_message, clear_memory, get_chain, push_convo2db
from app_config import ISSUES, SOURCES, source2label

logger = get_logger(__name__)
openai_api_key = os.environ['OPENAI_API_KEY'] 
memories = {'memory':{"issue": ISSUES[0], "source": SOURCES[0]}}

if 'previous_source' not in st.session_state:
    st.session_state['previous_source'] = SOURCES[0]
if 'db_client' not in st.session_state:
    st.session_state["db_client"] = get_db_client()

with st.sidebar:
    username = st.text_input("Username", value='ivnban-ctl', max_chars=30)
    temperature = st.slider("Temperature", 0., 1., value=0.8, step=0.1)
    issue = st.selectbox("Select an Issue", ISSUES, index=0,
                            on_change=clear_memory, kwargs={"memories":memories, "username":username, "language":"English"}
                        )
    supported_languages = ['English', "Spanish"] if issue == "Anxiety" else ['English']
    language = st.selectbox("Select a Language", supported_languages, index=0,
                            on_change=clear_memory, kwargs={"memories":memories, "username":username, "language":"English"}
                        )
                            
    source = st.selectbox("Select a source Model A", SOURCES, index=1,
                          format_func=source2label, 
                        )

memories = {'memory':{"issue":issue, "source":source}}
changed_source = st.session_state['previous_source'] != source
create_memory_add_initial_message(memories, username, language, changed_source=changed_source)
st.session_state['previous_source'] = source
memoryA = st.session_state[list(memories.keys())[0]]
llm_chain, stopper = get_chain(issue, language, source, memoryA, temperature)

st.title("💬 Simulator") 

for msg in memoryA.buffer_as_messages:
    role = "user" if type(msg) == HumanMessage else "assistant"
    st.chat_message(role).write(msg.content)

if prompt := st.chat_input():
    if 'convo_id' not in st.session_state:
        push_convo2db(memories, username, language)

    st.chat_message("user").write(prompt)
    response = llm_chain.predict(input=prompt, stop=stopper)
    # response = update_memory_completion(prompt, st.session_state["memory"], OA_engine, temperature)
    st.chat_message("assistant").write(response)