Spaces:
Running
Running
File size: 4,156 Bytes
5832f57 975a927 5832f57 9ff00d4 20b3b4a 18f6362 5832f57 975a927 5832f57 20b3b4a 975a927 9ff00d4 975a927 9ff00d4 5832f57 20b3b4a 18f6362 975a927 5832f57 9ff00d4 5832f57 9ff00d4 975a927 5832f57 9ff00d4 975a927 5832f57 9ff00d4 5832f57 9ff00d4 975a927 9ff00d4 5832f57 975a927 5832f57 9ff00d4 975a927 5832f57 20b3b4a 5832f57 20b3b4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
import os
import streamlit as st
from streamlit.logger import get_logger
from langchain.schema.messages import HumanMessage
from utils.mongo_utils import get_db_client
from utils.app_utils import create_memory_add_initial_message, get_random_name, DEFAULT_NAMES_DF
from utils.memory_utils import clear_memory, push_convo2db
from utils.chain_utils import get_chain, custom_chain_predict
from app_config import ISSUES, SOURCES, source2label, issue2label
logger = get_logger(__name__)
openai_api_key = os.environ['OPENAI_API_KEY']
temperature = 0.8
username = "barb-chase" #"ivnban-ctl"
if "sent_messages" not in st.session_state:
st.session_state['sent_messages'] = 0
if "issue" not in st.session_state:
st.session_state['issue'] = ISSUES[0]
if 'previous_source' not in st.session_state:
st.session_state['previous_source'] = SOURCES[0]
if 'db_client' not in st.session_state:
st.session_state["db_client"] = get_db_client()
if 'counselor_name' not in st.session_state:
st.session_state["counselor_name"] = get_random_name(names_df=DEFAULT_NAMES_DF)
if 'texter_name' not in st.session_state:
st.session_state["texter_name"] = get_random_name(names_df=DEFAULT_NAMES_DF)
logger.info(f"texter name is {st.session_state['texter_name']}")
memories = {'memory':{"issue": st.session_state['issue'], "source": st.session_state['previous_source']}}
with st.sidebar:
# username = st.text_input("Username", value='ivnban-ctl', max_chars=30)
# temperature = st.slider("Temperature", 0., 1., value=0.8, step=0.1)
issue = st.selectbox("Select a Scenario", ISSUES, index=0, format_func=issue2label,
on_change=clear_memory, kwargs={"memories":memories, "username":username, "language":"English"}
)
supported_languages = ['en', "es"] if issue == "Anxiety" else ['en']
language = st.selectbox("Select a Language", supported_languages, index=0,
format_func=lambda x: "English" if x=="en" else "Spanish",
on_change=clear_memory, kwargs={"memories":memories, "username":username, "language":"English"}
)
source = st.selectbox("Select a source Model A", SOURCES, index=0,
format_func=source2label,
)
st.markdown(f"### Previous Prompt Count: :red[**{st.session_state['sent_messages']}**]")
changed_source = any([
st.session_state['previous_source'] != source,
st.session_state['issue'] != issue
])
if changed_source:
st.session_state["counselor_name"] = get_random_name(names_df=DEFAULT_NAMES_DF)
st.session_state["texter_name"] = get_random_name(names_df=DEFAULT_NAMES_DF)
st.session_state['previous_source'] = source
st.session_state['issue'] = issue
st.session_state['sent_messages'] = 0
create_memory_add_initial_message(memories,
issue,
language,
changed_source=changed_source,
counselor_name=st.session_state["counselor_name"],
texter_name=st.session_state["texter_name"])
st.session_state['previous_source'] = source
memoryA = st.session_state[list(memories.keys())[0]]
llm_chain, stopper = get_chain(issue, language, source, memoryA, temperature, texter_name=st.session_state["texter_name"])
st.title("💬 Simulator")
for msg in memoryA.buffer_as_messages:
role = "user" if type(msg) == HumanMessage else "assistant"
st.chat_message(role).write(msg.content)
if prompt := st.chat_input():
st.session_state['sent_messages'] += 1
if 'convo_id' not in st.session_state:
push_convo2db(memories, username, language)
st.chat_message("user").write(prompt)
responses = custom_chain_predict(llm_chain, prompt, stopper)
# responses = llm_chain.predict(input=prompt, stop=stopper)
# response = update_memory_completion(prompt, st.session_state["memory"], OA_engine, temperature)
for response in responses:
st.chat_message("assistant").write(response) |