from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings import HuggingFaceEmbeddings from langchain import FAISS from langchain.chains.question_answering import load_qa_chain from langchain.llms import openai from langchain.chat_models import ChatOpenAI from langchain.callbacks import get_openai_callback from PyPDF2 import PdfReader def process_text(text): text_splitter = CharacterTextSplitter( separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len ) chunks = text_splitter.split_text(text) embeddings=HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2') knowledgeBase=FAISS.from_texts(chunks,embeddings) return knowledgeBase def summarizer(pdf): if pdf is not None: pdf_reader=PdfReader(pdf) text = "" for page in pdf_reader.pages: text += page.extract_text() or "" knowledgeBase = process_text(text) query="Summarize the content of the uploaded PDF file in 10-15 sentences." if query: docs=knowledgeBase.similarity_search(query) OpenAIModel = "gpt-3.5-turbo-16k" llm = ChatOpenAI(model=OpenAIModel, temperature=0.7) chain=load_qa_chain(llm, chain_type='stuff') with get_openai_callback() as cost: response=chain.run(input_documents=docs, question=query) print(cost) return response