#!/usr/bin/env python import os from threading import Thread from typing import Iterator import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer DESCRIPTION = "# Mistral-7B" if not torch.cuda.is_available(): DESCRIPTION += "\n

Running on CPU 🥶 This demo does not work on CPU.

" MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = 4096 if torch.cuda.is_available(): model_id = "codys12/MergeLlama-7b" model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map=0, cache_dir="/data") tokenizer = AutoTokenizer.from_pretrained("codellama/CodeLlama-7b-hf", trust_remote_code=True) #tokenizer.pad_token = tokenizer.eos_token #tokenizer.padding_side = "right" @spaces.GPU def generate( message: str, chat_history: list[tuple[str, str]], max_new_tokens: int = 1024, #temperature: float = 0.6, #top_p: float = 0.9, #top_k: int = 50, #repetition_penalty: float = 1.2, ) -> Iterator[str]: conversation = [] current_input = "" for user, assistant in chat_history: current_input += user current_input += assistant history = current_input current_input += message device = "cuda" input_ids = tokenizer(current_input, return_tensors="pt").input_ids.to(device) if len(input_ids) > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[-MAX_INPUT_TOKEN_LENGTH:] gr.Warning("Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, #do_sample=True, #top_p=top_p, #top_k=top_k, #temperature=temperature, #num_beams=1, #repetition_penalty=repetition_penalty, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) chat_interface = gr.ChatInterface( fn=generate, additional_inputs=[ gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), # gr.Slider( # label="Temperature", # minimum=0.1, # maximum=4.0, # step=0.1, # value=0.6, # ), # gr.Slider( # label="Top-p (nucleus sampling)", # minimum=0.05, # maximum=1.0, # step=0.05, # value=0.9, # ), # gr.Slider( # label="Top-k", # minimum=1, # maximum=1000, # step=1, # value=50, # ), # gr.Slider( # label="Repetition penalty", # minimum=1.0, # maximum=2.0, # step=0.05, # value=1.2, # ), ], stop_btn=None, examples=[ ["<<<<<<<\nimport org.apache.flink.api.java.tuple.Tuple2;\n\n=======\n\nimport org.apache.commons.collections.MapUtils;\nimport org.apache.flink.api.common.functions.RuntimeContext;\n\n>>>>>>>"], ["<<<<<<<\n // Simple check for whether our target app uses Recoil\n if (window[`$recoilDebugStates`]) {\n isRecoil = true;\n }\n\n=======\n\n if (\n memoizedState &&\n (tag === 0 || tag === 1 || tag === 2 || tag === 10) &&\n isRecoil === true\n ) {\n if (memoizedState.queue) {\n // Hooks states are stored as a linked list using memoizedState.next,\n // so we must traverse through the list and get the states.\n // We then store them along with the corresponding memoizedState.queue,\n // which includes the dispatch() function we use to change their state.\n const hooksStates = traverseRecoilHooks(memoizedState);\n hooksStates.forEach((state, i) => {\n\n hooksIndex = componentActionsRecord.saveNew(\n state.state,\n state.component\n );\n componentData.hooksIndex = hooksIndex;\n if (newState && newState.hooksState) {\n newState.push(state.state);\n } else if (newState) {\n newState = [state.state];\n } else {\n newState.push(state.state);\n }\n componentFound = true;\n });\n }\n }\n\n>>>>>>>"], ["Explain the plot of Cinderella in a sentence."], ["How many hours does it take a man to eat a Helicopter?"], ["Write a 100-word article on 'Benefits of Open-Source in AI research'"], ], ) with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) gr.DuplicateButton( value="Duplicate Space for private use", elem_id="duplicate-button", visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", ) chat_interface.render() if __name__ == "__main__": demo.queue(max_size=20).launch()