Spaces:
Paused
Paused
#!/usr/bin/env python | |
import os | |
from threading import Thread | |
from typing import Iterator | |
import gradio as gr | |
import spaces | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
DESCRIPTION = "# Mistral-7B" | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
MAX_INPUT_TOKEN_LENGTH = 4096 | |
if torch.cuda.is_available(): | |
model_id = "codys12/MergeLlama-7b" | |
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map=0, cache_dir="/data") | |
tokenizer = AutoTokenizer.from_pretrained("codellama/CodeLlama-7b-hf", trust_remote_code=True) | |
#tokenizer.pad_token = tokenizer.eos_token | |
#tokenizer.padding_side = "right" | |
def generate( | |
message: str, | |
chat_history: list[tuple[str, str]], | |
max_new_tokens: int = 1024, | |
#temperature: float = 0.6, | |
#top_p: float = 0.9, | |
#top_k: int = 50, | |
#repetition_penalty: float = 1.2, | |
) -> Iterator[str]: | |
conversation = [] | |
current_input = "" | |
for user, assistant in chat_history: | |
current_input += user | |
current_input += assistant | |
history = current_input | |
current_input += message | |
device = "cuda" | |
input_ids = tokenizer(current_input, return_tensors="pt").input_ids.to(device) | |
original_input_length = input_ids.shape[1] # Remember the input length | |
if len(input_ids) > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[-MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning("Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_special_tokens=True) | |
generate_kwargs = dict( | |
{"input_ids": input_ids}, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
#do_sample=True, | |
#top_p=top_p, | |
#top_k=top_k, | |
#temperature=temperature, | |
#num_beams=1, | |
#repetition_penalty=repetition_penalty, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
print() | |
outputs = [] | |
for text in streamer: | |
print(text.replace(history, ""), end="") | |
outputs.append(text) | |
yield "".join(outputs) | |
chat_interface = gr.ChatInterface( | |
fn=generate, | |
additional_inputs=[ | |
gr.Slider( | |
label="Max new tokens", | |
minimum=1, | |
maximum=MAX_MAX_NEW_TOKENS, | |
step=1, | |
value=DEFAULT_MAX_NEW_TOKENS, | |
), | |
# gr.Slider( | |
# label="Temperature", | |
# minimum=0.1, | |
# maximum=4.0, | |
# step=0.1, | |
# value=0.6, | |
# ), | |
# gr.Slider( | |
# label="Top-p (nucleus sampling)", | |
# minimum=0.05, | |
# maximum=1.0, | |
# step=0.05, | |
# value=0.9, | |
# ), | |
# gr.Slider( | |
# label="Top-k", | |
# minimum=1, | |
# maximum=1000, | |
# step=1, | |
# value=50, | |
# ), | |
# gr.Slider( | |
# label="Repetition penalty", | |
# minimum=1.0, | |
# maximum=2.0, | |
# step=0.05, | |
# value=1.2, | |
# ), | |
], | |
stop_btn=None, | |
examples=[ | |
["<<<<<<<\nimport org.apache.flink.api.java.tuple.Tuple2;\n\n=======\n\nimport org.apache.commons.collections.MapUtils;\nimport org.apache.flink.api.common.functions.RuntimeContext;\n\n>>>>>>>"], | |
["<<<<<<<\n // Simple check for whether our target app uses Recoil\n if (window[`$recoilDebugStates`]) {\n isRecoil = true;\n }\n\n=======\n\n if (\n memoizedState &&\n (tag === 0 || tag === 1 || tag === 2 || tag === 10) &&\n isRecoil === true\n ) {\n if (memoizedState.queue) {\n // Hooks states are stored as a linked list using memoizedState.next,\n // so we must traverse through the list and get the states.\n // We then store them along with the corresponding memoizedState.queue,\n // which includes the dispatch() function we use to change their state.\n const hooksStates = traverseRecoilHooks(memoizedState);\n hooksStates.forEach((state, i) => {\n\n hooksIndex = componentActionsRecord.saveNew(\n state.state,\n state.component\n );\n componentData.hooksIndex = hooksIndex;\n if (newState && newState.hooksState) {\n newState.push(state.state);\n } else if (newState) {\n newState = [state.state];\n } else {\n newState.push(state.state);\n }\n componentFound = true;\n });\n }\n }\n\n>>>>>>>"], | |
["Explain the plot of Cinderella in a sentence."], | |
["How many hours does it take a man to eat a Helicopter?"], | |
["Write a 100-word article on 'Benefits of Open-Source in AI research'"], | |
], | |
) | |
with gr.Blocks(css="style.css") as demo: | |
gr.Markdown(DESCRIPTION) | |
gr.DuplicateButton( | |
value="Duplicate Space for private use", | |
elem_id="duplicate-button", | |
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", | |
) | |
chat_interface.render() | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch() | |