MergeLlama-7b / app.py
codys12's picture
testing
5f9f635
raw
history blame
5.53 kB
#!/usr/bin/env python
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from peft import PeftModel, PeftConfig
DESCRIPTION = "# Mistral-7B"
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 256
MAX_INPUT_TOKEN_LENGTH = 4096
if torch.cuda.is_available():
model_id = "codys12/MergeLlama-7b"
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True, torch_dtype=torch.float16, device_map=0, cache_dir="/data")
tokenizer = AutoTokenizer.from_pretrained("codellama/CodeLlama-7b-hf", trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
max_new_tokens: int = 1024,
#temperature: float = 0.6,
#top_p: float = 0.9,
#top_k: int = 50,
#repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = []
current_input = ""
for user, assistant in chat_history:
current_input += user
current_input += assistant
history = current_input
current_input += message
device = "cuda:0"
print(current_input)
input_ids = tokenizer(current_input, return_tensors="pt").input_ids.to(device)
outputs = model.generate(input_ids, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=False))
if len(input_ids) > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[-MAX_INPUT_TOKEN_LENGTH:]
gr.Warning("Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
#do_sample=True,
#top_p=top_p,
#top_k=top_k,
#temperature=temperature,
#num_beams=1,
#repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
combined_text = "".join(outputs)
yield combined_text
if "<<<<<<<" in combined_text:
break
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
# gr.Slider(
# label="Temperature",
# minimum=0.1,
# maximum=4.0,
# step=0.1,
# value=0.6,
# ),
# gr.Slider(
# label="Top-p (nucleus sampling)",
# minimum=0.05,
# maximum=1.0,
# step=0.05,
# value=0.9,
# ),
# gr.Slider(
# label="Top-k",
# minimum=1,
# maximum=1000,
# step=1,
# value=50,
# ),
# gr.Slider(
# label="Repetition penalty",
# minimum=0.1,
# maximum=2.0,
# step=0.05,
# value=1.2,
# ),
],
stop_btn=None,
examples=[
["<<<<<<<\nimport org.apache.flink.api.java.tuple.Tuple2;\n\n=======\n\nimport org.apache.commons.collections.MapUtils;\nimport org.apache.flink.api.common.functions.RuntimeContext;\n\n>>>>>>>"],
["<<<<<<<\n // Simple check for whether our target app uses Recoil\n if (window[`$recoilDebugStates`]) {\n isRecoil = true;\n }\n\n=======\n\n if (\n memoizedState &&\n (tag === 0 || tag === 1 || tag === 2 || tag === 10) &&\n isRecoil === true\n ) {\n if (memoizedState.queue) {\n // Hooks states are stored as a linked list using memoizedState.next,\n // so we must traverse through the list and get the states.\n // We then store them along with the corresponding memoizedState.queue,\n // which includes the dispatch() function we use to change their state.\n const hooksStates = traverseRecoilHooks(memoizedState);\n hooksStates.forEach((state, i) => {\n\n hooksIndex = componentActionsRecord.saveNew(\n state.state,\n state.component\n );\n componentData.hooksIndex = hooksIndex;\n if (newState && newState.hooksState) {\n newState.push(state.state);\n } else if (newState) {\n newState = [state.state];\n } else {\n newState.push(state.state);\n }\n componentFound = true;\n });\n }\n }\n\n>>>>>>>"],
["Explain the plot of Cinderella in a sentence."],
["How many hours does it take a man to eat a Helicopter?"],
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
],
)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
chat_interface.render()
if __name__ == "__main__":
demo.queue(max_size=20).launch()