Spaces:
Paused
Paused
File size: 6,124 Bytes
8824f88 5ac471c 192a9de 8824f88 f2e9284 8824f88 14acdab 8824f88 faf8f3f 36ff73f 9a7bc17 36ff73f 8824f88 8ef0569 b2015f4 8824f88 faf8f3f 8824f88 a5f97a2 faf8f3f 151d4c2 faf8f3f f2e9284 faf8f3f 5b4300b 1ba36bf 73d0fad 8824f88 96b060f 99ab088 8ef0569 b2015f4 99ab088 8824f88 99ab088 5f9f635 f473751 5f9f635 f473751 8824f88 8ef0569 b2015f4 8824f88 f2e9284 8824f88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
#!/usr/bin/env python
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from peft import PeftModel, PeftConfig
DESCRIPTION = "This is a conversational interface powered by the MergeLlama-7b model, a finetune of CodeLlama-7b designed to assist developers in resolving merge conflicts in their code. "
DESCRIPTION += "It leverages the capabilities of deep learning to provide suggestions for reconciling code differences, presenting potential resolutions for highlighted changes\n"
DESCRIPTION += "The feedback from this space will help develop future versions including more powerful 13b and 34b versions."
DESCRIPTION += "\n# How to use: \n"
DESCRIPTION += "1. Input your merge conflict in the chat in the following format:\n```\n<<<<<<<\n[change]\n=======\n[base]\n>>>>>>>\n```\n"
DESCRIPTION += "The model will generate the merge resolution. Context can be added before the conflict and multiple conflicts/resolutions can be chained together for context.\n"
DESCRIPTION += "**Additional Information:**\n"
DESCRIPTION += "- The model behind this tool is based on the MergeLlama dataset, which can be found [here](https://huggingface.co/datasets/codys12/MergeLlama).\n"
DESCRIPTION += "- For more information about the MergeLlama-7b model, visit [here](https://huggingface.co/codys12/MergeLlama-7b).\n"
DESCRIPTION += "- If you are interested in supporting the larger versions of this model, such as the 13b and 34b variants, you can check them out [here](https://www.dreamcatcher.co/ProjectPage?projectId=uibaxk4sfzetpkg7ch71ui).\n"
DESCRIPTION += "- This model was trained on [DreamcatcherAI](https://www.dreamcatcher.co/Discover)\n"
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 256
MAX_INPUT_TOKEN_LENGTH = 4096
if torch.cuda.is_available():
model_id = "codys12/MergeLlama-7b"
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True, torch_dtype=torch.float16, device_map=0, cache_dir="/data")
tokenizer = AutoTokenizer.from_pretrained("codellama/CodeLlama-7b-hf", trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
max_new_tokens: int = 1024,
#temperature: float = 0.6,
#top_p: float = 0.9,
#top_k: int = 50,
#repetition_penalty: float = 1.2,
) -> Iterator[str]:
conversation = []
current_input = ""
for user, assistant in chat_history:
current_input += user
current_input += assistant
history = current_input
current_input += message
current_input += "\n"
device = "cuda:0"
input_ids = tokenizer(current_input, return_tensors="pt").input_ids.to(device)
if len(input_ids) > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[-MAX_INPUT_TOKEN_LENGTH:]
gr.Warning("Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
#do_sample=True,
#top_p=top_p,
#top_k=top_k,
#temperature=temperature,
#num_beams=1,
#repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
combined_text = "".join(outputs)
if "<<<<<<<" in combined_text:
combined_text = combined_text.replace("<<<<<<<", "") # Remove the unwanted string
yield combined_text
break
else:
yield combined_text
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
# gr.Slider(
# label="Temperature",
# minimum=0.1,
# maximum=4.0,
# step=0.1,
# value=0.6,
# ),
# gr.Slider(
# label="Top-p (nucleus sampling)",
# minimum=0.05,
# maximum=1.0,
# step=0.05,
# value=0.9,
# ),
# gr.Slider(
# label="Top-k",
# minimum=1,
# maximum=1000,
# step=1,
# value=50,
# ),
# gr.Slider(
# label="Repetition penalty",
# minimum=0.1,
# maximum=2.0,
# step=0.05,
# value=1.2,
# ),
],
stop_btn=None,
examples=[
["<<<<<<<\n var visibleSets = beatmapSets.Where(s => !s.Filtered).ToList();\n if (!visibleSets.Any())\n return;\n\n=======\n\n var visible = beatmapSets.Where(s => !s.Filtered).ToList();\n if (!visible.Any())\n return false;\n\n>>>>>>>"],
["<<<<<<<\n// Related to JDK7\nimport java.nio.channels.FileChannel;\n\n=======\n\n// Branch-dependent imports\nimport java.nio.channels.SeekableByteChannel;\n\n>>>>>>>"],
["<<<<<<<\n bind(BlobDirectoryAccess.class, DefaultBlobDirectoryAccess.class);\n\n=======\n\n bind(new TypeLiteral<UpdateStepRepositoryMetadataAccess<Path>>() {}).to(new TypeLiteral<MetadataStore>() {});\n\n>>>>>>>"],
],
)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
chat_interface.render()
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|