File size: 5,330 Bytes
8824f88
 
 
 
 
 
 
 
 
5ac471c
8824f88
 
 
 
 
 
 
 
 
 
 
faf8f3f
60682e7
9a7bc17
 
 
8824f88
 
 
 
 
 
 
8ef0569
 
 
 
8824f88
 
faf8f3f
8824f88
a5f97a2
 
faf8f3f
151d4c2
faf8f3f
 
f5ee359
1ba36bf
73d0fad
 
8824f88
 
 
 
 
96b060f
99ab088
 
 
 
8ef0569
 
 
 
 
ab23fe8
99ab088
 
 
dac8084
8824f88
99ab088
 
0c42252
99ab088
5976549
8824f88
 
 
 
 
 
 
 
 
 
 
 
8ef0569
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8824f88
 
 
c4cdcd8
 
8824f88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#!/usr/bin/env python

import os
from threading import Thread
from typing import Iterator

import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer

DESCRIPTION = "# Mistral-7B"

if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = 4096

if torch.cuda.is_available():
    model_id = "codys12/MergeLlama-7b"
    model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map=0, cache_dir="/data")
    tokenizer = AutoTokenizer.from_pretrained("codellama/CodeLlama-7b-hf", trust_remote_code=True)
    #tokenizer.pad_token = tokenizer.eos_token
    #tokenizer.padding_side = "right"


@spaces.GPU
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    max_new_tokens: int = 1024,
    #temperature: float = 0.6,
    #top_p: float = 0.9,
    #top_k: int = 50,
    #repetition_penalty: float = 1.2,
) -> Iterator[str]:
    conversation = []
    current_input = ""
    for user, assistant in chat_history:
        current_input += user
        current_input += assistant

    history = current_input
    current_input += message
    
    device = "cuda"
    input_ids = tokenizer(current_input, return_tensors="pt").input_ids.to(device)
    original_input_length = input_ids.shape[1]  # Remember the input length


    if len(input_ids) > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[-MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning("Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")

    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        #do_sample=True,
        #top_p=top_p,
        #top_k=top_k,
        #temperature=temperature,
        #num_beams=1,
        repetition_penalty=1.0,#repetition_penalty,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()
    print()

    outputs = []
    for text in streamer:
        print(text, end="")
        outputs.append(text)
        yield "".join(outputs)


chat_interface = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        ),
        # gr.Slider(
        #     label="Temperature",
        #     minimum=0.1,
        #     maximum=4.0,
        #     step=0.1,
        #     value=0.6,
        # ),
        # gr.Slider(
        #     label="Top-p (nucleus sampling)",
        #     minimum=0.05,
        #     maximum=1.0,
        #     step=0.05,
        #     value=0.9,
        # ),
        # gr.Slider(
        #     label="Top-k",
        #     minimum=1,
        #     maximum=1000,
        #     step=1,
        #     value=50,
        # ),
        # gr.Slider(
        #     label="Repetition penalty",
        #     minimum=1.0,
        #     maximum=2.0,
        #     step=0.05,
        #     value=1.2,
        # ),
    ],
    stop_btn=None,
    examples=[
        ["<<<<<<<\nimport org.apache.flink.api.java.tuple.Tuple2;\n\n=======\n\nimport org.apache.commons.collections.MapUtils;\nimport org.apache.flink.api.common.functions.RuntimeContext;\n\n>>>>>>>"],
        ["<<<<<<<\n  // Simple check for whether our target app uses Recoil\n  if (window[`$recoilDebugStates`]) {\n    isRecoil = true;\n  }\n\n=======\n\n    if (\n      memoizedState &&\n      (tag === 0 || tag === 1 || tag === 2 || tag === 10) &&\n      isRecoil === true\n    ) {\n      if (memoizedState.queue) {\n        // Hooks states are stored as a linked list using memoizedState.next,\n        // so we must traverse through the list and get the states.\n        // We then store them along with the corresponding memoizedState.queue,\n        // which includes the dispatch() function we use to change their state.\n        const hooksStates = traverseRecoilHooks(memoizedState);\n        hooksStates.forEach((state, i) => {\n\n          hooksIndex = componentActionsRecord.saveNew(\n            state.state,\n            state.component\n          );\n          componentData.hooksIndex = hooksIndex;\n          if (newState && newState.hooksState) {\n            newState.push(state.state);\n          } else if (newState) {\n            newState = [state.state];\n          } else {\n            newState.push(state.state);\n          }\n          componentFound = true;\n        });\n      }\n    }\n\n>>>>>>>"],
        ["Explain the plot of Cinderella in a sentence."],
        ["How many hours does it take a man to eat a Helicopter?"],
        ["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
    ],
)

with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(
        value="Duplicate Space for private use",
        elem_id="duplicate-button",
        visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
    )
    chat_interface.render()

if __name__ == "__main__":
    demo.queue(max_size=20).launch()