Spaces:
Runtime error
Runtime error
modify space
Browse files- app.py +49 -277
- requirements.txt +4 -7
app.py
CHANGED
@@ -1,214 +1,80 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
|
3 |
-
from __future__ import annotations
|
4 |
-
|
5 |
import os
|
6 |
import random
|
7 |
|
8 |
import gradio as gr
|
9 |
import numpy as np
|
10 |
-
import PIL.Image
|
11 |
import torch
|
12 |
-
from diffusers import
|
|
|
13 |
import uuid
|
14 |
|
15 |
-
DESCRIPTION =
|
16 |
-
#### [
|
17 |
-
|
18 |
-
if not torch.cuda.is_available():
|
19 |
-
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
20 |
|
21 |
MAX_SEED = np.iinfo(np.int32).max
|
22 |
-
CACHE_EXAMPLES =
|
23 |
-
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "
|
24 |
-
|
25 |
-
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
26 |
-
ENABLE_REFINER = os.getenv("ENABLE_REFINER", "0") == "1"
|
27 |
-
|
28 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
29 |
-
|
30 |
-
style_list = [
|
31 |
-
{
|
32 |
-
"name": "(No style)",
|
33 |
-
"prompt": "{prompt}",
|
34 |
-
"negative_prompt": "",
|
35 |
-
},
|
36 |
-
{
|
37 |
-
"name": "Cinematic",
|
38 |
-
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
|
39 |
-
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
|
40 |
-
},
|
41 |
-
{
|
42 |
-
"name": "Photographic",
|
43 |
-
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
|
44 |
-
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
|
45 |
-
},
|
46 |
-
{
|
47 |
-
"name": "Anime",
|
48 |
-
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed",
|
49 |
-
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
|
50 |
-
},
|
51 |
-
{
|
52 |
-
"name": "Manga",
|
53 |
-
"prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style",
|
54 |
-
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style",
|
55 |
-
},
|
56 |
-
{
|
57 |
-
"name": "Digital Art",
|
58 |
-
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
|
59 |
-
"negative_prompt": "photo, photorealistic, realism, ugly",
|
60 |
-
},
|
61 |
-
{
|
62 |
-
"name": "Pixel art",
|
63 |
-
"prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics",
|
64 |
-
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
|
65 |
-
},
|
66 |
-
{
|
67 |
-
"name": "Fantasy art",
|
68 |
-
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
|
69 |
-
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
|
70 |
-
},
|
71 |
-
{
|
72 |
-
"name": "Neonpunk",
|
73 |
-
"prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
|
74 |
-
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
|
75 |
-
},
|
76 |
-
{
|
77 |
-
"name": "3D Model",
|
78 |
-
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
|
79 |
-
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
|
80 |
-
},
|
81 |
-
]
|
82 |
|
83 |
-
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
|
84 |
-
STYLE_NAMES = list(styles.keys())
|
85 |
-
DEFAULT_STYLE_NAME = "Cinematic"
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
-
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
|
89 |
-
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
90 |
-
if not negative:
|
91 |
-
negative = ""
|
92 |
-
return p.replace("{prompt}", positive), n + negative
|
93 |
-
|
94 |
-
|
95 |
-
if torch.cuda.is_available():
|
96 |
-
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
97 |
-
pipe = StableDiffusionXLPipeline.from_pretrained(
|
98 |
-
"segmind/SSD-1B",
|
99 |
-
vae=vae,
|
100 |
-
torch_dtype=torch.float16,
|
101 |
-
use_safetensors=True,
|
102 |
-
variant="fp16",
|
103 |
-
)
|
104 |
-
if ENABLE_REFINER:
|
105 |
-
refiner = DiffusionPipeline.from_pretrained(
|
106 |
-
"stabilityai/stable-diffusion-xl-refiner-1.0",
|
107 |
-
vae=vae,
|
108 |
-
torch_dtype=torch.float16,
|
109 |
-
use_safetensors=True,
|
110 |
-
variant="fp16",
|
111 |
-
)
|
112 |
-
|
113 |
-
if ENABLE_CPU_OFFLOAD:
|
114 |
-
pipe.enable_model_cpu_offload()
|
115 |
-
if ENABLE_REFINER:
|
116 |
-
refiner.enable_model_cpu_offload()
|
117 |
-
else:
|
118 |
-
pipe.to(device)
|
119 |
-
if ENABLE_REFINER:
|
120 |
-
refiner.to(device)
|
121 |
-
print("Loaded on Device!")
|
122 |
-
|
123 |
-
if USE_TORCH_COMPILE:
|
124 |
-
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
125 |
-
if ENABLE_REFINER:
|
126 |
-
refiner.unet = torch.compile(refiner.unet, mode="reduce-overhead", fullgraph=True)
|
127 |
-
print("Model Compiled!")
|
128 |
|
129 |
def save_image(img):
|
130 |
-
unique_name = str(uuid.uuid4()) +
|
131 |
img.save(unique_name)
|
132 |
return unique_name
|
133 |
|
|
|
134 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
135 |
if randomize_seed:
|
136 |
seed = random.randint(0, MAX_SEED)
|
137 |
return seed
|
138 |
|
|
|
|
|
139 |
def generate(
|
140 |
prompt: str,
|
141 |
-
negative_prompt: str = "",
|
142 |
-
style: str = DEFAULT_STYLE_NAME,
|
143 |
-
prompt_2: str = "",
|
144 |
-
negative_prompt_2: str = "",
|
145 |
-
use_negative_prompt: bool = False,
|
146 |
-
use_prompt_2: bool = False,
|
147 |
-
use_negative_prompt_2: bool = False,
|
148 |
seed: int = 0,
|
149 |
-
width: int =
|
150 |
-
height: int =
|
151 |
-
|
152 |
-
|
153 |
-
num_inference_steps_base: int = 25,
|
154 |
-
num_inference_steps_refiner: int = 25,
|
155 |
-
apply_refiner: bool = False,
|
156 |
randomize_seed: bool = False,
|
157 |
-
progress
|
158 |
):
|
159 |
seed = randomize_seed_fn(seed, randomize_seed)
|
160 |
generator = torch.Generator().manual_seed(seed)
|
161 |
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
prompt=prompt,
|
172 |
-
negative_prompt=negative_prompt,
|
173 |
-
prompt_2=prompt_2,
|
174 |
-
negative_prompt_2=negative_prompt_2,
|
175 |
-
width=width,
|
176 |
-
height=height,
|
177 |
-
guidance_scale=guidance_scale_base,
|
178 |
-
num_inference_steps=num_inference_steps_base,
|
179 |
-
generator=generator,
|
180 |
-
output_type="pil",
|
181 |
-
).images[0]
|
182 |
-
else:
|
183 |
-
latents = pipe(
|
184 |
-
prompt=prompt,
|
185 |
-
negative_prompt=negative_prompt,
|
186 |
-
prompt_2=prompt_2,
|
187 |
-
negative_prompt_2=negative_prompt_2,
|
188 |
-
width=width,
|
189 |
-
height=height,
|
190 |
-
guidance_scale=guidance_scale_base,
|
191 |
-
num_inference_steps=num_inference_steps_base,
|
192 |
-
generator=generator,
|
193 |
-
output_type="latent",
|
194 |
-
).images
|
195 |
-
image = refiner(
|
196 |
-
prompt=prompt,
|
197 |
-
negative_prompt=negative_prompt,
|
198 |
-
prompt_2=prompt_2,
|
199 |
-
negative_prompt_2=negative_prompt_2,
|
200 |
-
guidance_scale=guidance_scale_refiner,
|
201 |
-
num_inference_steps=num_inference_steps_refiner,
|
202 |
-
image=latents,
|
203 |
-
generator=generator,
|
204 |
-
).images[0]
|
205 |
-
|
206 |
image_path = save_image(image)
|
207 |
print(image_path)
|
208 |
return [image_path], seed
|
209 |
|
210 |
|
211 |
-
examples = [
|
|
|
|
|
|
|
|
|
|
|
212 |
|
213 |
with gr.Blocks(css="style.css") as demo:
|
214 |
gr.Markdown(DESCRIPTION)
|
@@ -229,34 +95,6 @@ with gr.Blocks(css="style.css") as demo:
|
|
229 |
run_button = gr.Button("Run", scale=0)
|
230 |
result = gr.Gallery(label="Result", columns=1, show_label=False)
|
231 |
with gr.Accordion("Advanced options", open=False):
|
232 |
-
with gr.Row():
|
233 |
-
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False)
|
234 |
-
use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False)
|
235 |
-
use_negative_prompt_2 = gr.Checkbox(label="Use negative prompt 2", value=False)
|
236 |
-
style_selection = gr.Radio(
|
237 |
-
show_label=True, container=True, interactive=True,
|
238 |
-
choices=STYLE_NAMES,
|
239 |
-
value=DEFAULT_STYLE_NAME,
|
240 |
-
label='Image Style'
|
241 |
-
)
|
242 |
-
negative_prompt = gr.Text(
|
243 |
-
label="Negative prompt",
|
244 |
-
max_lines=1,
|
245 |
-
placeholder="Enter a negative prompt",
|
246 |
-
visible=False,
|
247 |
-
)
|
248 |
-
prompt_2 = gr.Text(
|
249 |
-
label="Prompt 2",
|
250 |
-
max_lines=1,
|
251 |
-
placeholder="Enter your prompt",
|
252 |
-
visible=False,
|
253 |
-
)
|
254 |
-
negative_prompt_2 = gr.Text(
|
255 |
-
label="Negative prompt 2",
|
256 |
-
max_lines=1,
|
257 |
-
placeholder="Enter a negative prompt",
|
258 |
-
visible=False,
|
259 |
-
)
|
260 |
seed = gr.Slider(
|
261 |
label="Seed",
|
262 |
minimum=0,
|
@@ -280,36 +118,20 @@ with gr.Blocks(css="style.css") as demo:
|
|
280 |
step=32,
|
281 |
value=1024,
|
282 |
)
|
283 |
-
apply_refiner = gr.Checkbox(label="Apply refiner", value=False, visible=ENABLE_REFINER)
|
284 |
with gr.Row():
|
285 |
-
|
286 |
-
label="Guidance scale
|
287 |
-
minimum=1,
|
288 |
-
maximum=20,
|
289 |
-
step=0.1,
|
290 |
-
value=9.0,
|
291 |
-
)
|
292 |
-
num_inference_steps_base = gr.Slider(
|
293 |
-
label="Number of inference steps for base",
|
294 |
-
minimum=10,
|
295 |
-
maximum=100,
|
296 |
-
step=1,
|
297 |
-
value=25,
|
298 |
-
)
|
299 |
-
with gr.Row(visible=False) as refiner_params:
|
300 |
-
guidance_scale_refiner = gr.Slider(
|
301 |
-
label="Guidance scale for refiner",
|
302 |
minimum=1,
|
303 |
maximum=20,
|
304 |
step=0.1,
|
305 |
-
value=5
|
306 |
)
|
307 |
-
|
308 |
-
label="Number of inference steps
|
309 |
minimum=10,
|
310 |
maximum=100,
|
311 |
step=1,
|
312 |
-
value=
|
313 |
)
|
314 |
|
315 |
gr.Examples(
|
@@ -320,66 +142,16 @@ with gr.Blocks(css="style.css") as demo:
|
|
320 |
cache_examples=CACHE_EXAMPLES,
|
321 |
)
|
322 |
|
323 |
-
use_negative_prompt.change(
|
324 |
-
fn=lambda x: gr.update(visible=x),
|
325 |
-
inputs=use_negative_prompt,
|
326 |
-
outputs=negative_prompt,
|
327 |
-
queue=False,
|
328 |
-
api_name=False,
|
329 |
-
)
|
330 |
-
use_prompt_2.change(
|
331 |
-
fn=lambda x: gr.update(visible=x),
|
332 |
-
inputs=use_prompt_2,
|
333 |
-
outputs=prompt_2,
|
334 |
-
queue=False,
|
335 |
-
api_name=False,
|
336 |
-
)
|
337 |
-
use_negative_prompt_2.change(
|
338 |
-
fn=lambda x: gr.update(visible=x),
|
339 |
-
inputs=use_negative_prompt_2,
|
340 |
-
outputs=negative_prompt_2,
|
341 |
-
queue=False,
|
342 |
-
api_name=False,
|
343 |
-
)
|
344 |
-
apply_refiner.change(
|
345 |
-
fn=lambda x: gr.update(visible=x),
|
346 |
-
inputs=apply_refiner,
|
347 |
-
outputs=refiner_params,
|
348 |
-
queue=False,
|
349 |
-
api_name=False,
|
350 |
-
)
|
351 |
-
|
352 |
gr.on(
|
353 |
triggers=[
|
354 |
prompt.submit,
|
355 |
-
negative_prompt.submit,
|
356 |
-
prompt_2.submit,
|
357 |
-
negative_prompt_2.submit,
|
358 |
run_button.click,
|
359 |
],
|
360 |
fn=generate,
|
361 |
-
inputs=[
|
362 |
-
prompt,
|
363 |
-
negative_prompt,
|
364 |
-
style_selection,
|
365 |
-
prompt_2,
|
366 |
-
negative_prompt_2,
|
367 |
-
use_negative_prompt,
|
368 |
-
use_prompt_2,
|
369 |
-
use_negative_prompt_2,
|
370 |
-
seed,
|
371 |
-
width,
|
372 |
-
height,
|
373 |
-
guidance_scale_base,
|
374 |
-
guidance_scale_refiner,
|
375 |
-
num_inference_steps_base,
|
376 |
-
num_inference_steps_refiner,
|
377 |
-
apply_refiner,
|
378 |
-
randomize_seed
|
379 |
-
],
|
380 |
outputs=[result, seed],
|
381 |
api_name="run",
|
382 |
)
|
383 |
|
384 |
if __name__ == "__main__":
|
385 |
-
demo.queue(max_size=20).launch()
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import random
|
3 |
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
|
|
6 |
import torch
|
7 |
+
from diffusers import DiffusionPipeline, UNet2DConditionModel
|
8 |
+
import spaces
|
9 |
import uuid
|
10 |
|
11 |
+
DESCRIPTION = """# SPRIGHT T2I
|
12 |
+
#### [SPRIGHT T2I](https://spright.github.io/) is a framework to improve the spatial consistency of text-to-image models WITHOUT compromising their fidelity aspects.
|
13 |
+
"""
|
|
|
|
|
14 |
|
15 |
MAX_SEED = np.iinfo(np.int32).max
|
16 |
+
CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES", "1") == "1"
|
17 |
+
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "768"))
|
18 |
+
TOKEN = os.getenv("HF_TOKEN")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
|
|
|
|
|
|
20 |
|
21 |
+
pipe_id = "SPRIGHT-T2I/spright-t2i-v1"
|
22 |
+
unet = UNet2DConditionModel.from_pretrained(pipe_id, subfolder="unet_ema", torch_dtype=torch.float16)
|
23 |
+
pipe = DiffusionPipeline.from_pretrained(
|
24 |
+
pipe_id,
|
25 |
+
unet=unet,
|
26 |
+
torch_dtype=torch.float16,
|
27 |
+
use_safetensors=True,
|
28 |
+
token=TOKEN,
|
29 |
+
).to("cuda")
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
def save_image(img):
|
33 |
+
unique_name = str(uuid.uuid4()) + ".png"
|
34 |
img.save(unique_name)
|
35 |
return unique_name
|
36 |
|
37 |
+
|
38 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
39 |
if randomize_seed:
|
40 |
seed = random.randint(0, MAX_SEED)
|
41 |
return seed
|
42 |
|
43 |
+
|
44 |
+
@spaces.gpu
|
45 |
def generate(
|
46 |
prompt: str,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
seed: int = 0,
|
48 |
+
width: int = 768,
|
49 |
+
height: int = 768,
|
50 |
+
guidance_scale: float = 7.5,
|
51 |
+
num_inference_steps: int = 50,
|
|
|
|
|
|
|
52 |
randomize_seed: bool = False,
|
53 |
+
progress=gr.Progress(track_tqdm=True),
|
54 |
):
|
55 |
seed = randomize_seed_fn(seed, randomize_seed)
|
56 |
generator = torch.Generator().manual_seed(seed)
|
57 |
|
58 |
+
image = pipe(
|
59 |
+
prompt=prompt,
|
60 |
+
width=width,
|
61 |
+
height=height,
|
62 |
+
guidance_scale=guidance_scale,
|
63 |
+
num_inference_steps=num_inference_steps,
|
64 |
+
generator=generator,
|
65 |
+
).images[0]
|
66 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
image_path = save_image(image)
|
68 |
print(image_path)
|
69 |
return [image_path], seed
|
70 |
|
71 |
|
72 |
+
examples = [
|
73 |
+
"A cat next to a suitcase",
|
74 |
+
"A candle on the left of a mouse",
|
75 |
+
"A bag on the right of a dog",
|
76 |
+
"A mouse on the top of a bowl",
|
77 |
+
]
|
78 |
|
79 |
with gr.Blocks(css="style.css") as demo:
|
80 |
gr.Markdown(DESCRIPTION)
|
|
|
95 |
run_button = gr.Button("Run", scale=0)
|
96 |
result = gr.Gallery(label="Result", columns=1, show_label=False)
|
97 |
with gr.Accordion("Advanced options", open=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
seed = gr.Slider(
|
99 |
label="Seed",
|
100 |
minimum=0,
|
|
|
118 |
step=32,
|
119 |
value=1024,
|
120 |
)
|
|
|
121 |
with gr.Row():
|
122 |
+
guidance_scale = gr.Slider(
|
123 |
+
label="Guidance scale",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
minimum=1,
|
125 |
maximum=20,
|
126 |
step=0.1,
|
127 |
+
value=7.5,
|
128 |
)
|
129 |
+
num_inference_steps = gr.Slider(
|
130 |
+
label="Number of inference steps",
|
131 |
minimum=10,
|
132 |
maximum=100,
|
133 |
step=1,
|
134 |
+
value=50,
|
135 |
)
|
136 |
|
137 |
gr.Examples(
|
|
|
142 |
cache_examples=CACHE_EXAMPLES,
|
143 |
)
|
144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
gr.on(
|
146 |
triggers=[
|
147 |
prompt.submit,
|
|
|
|
|
|
|
148 |
run_button.click,
|
149 |
],
|
150 |
fn=generate,
|
151 |
+
inputs=[prompt, seed, width, height, guidance_scale, num_inference_steps, randomize_seed],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
outputs=[result, seed],
|
153 |
api_name="run",
|
154 |
)
|
155 |
|
156 |
if __name__ == "__main__":
|
157 |
+
demo.queue(max_size=20).launch()
|
requirements.txt
CHANGED
@@ -1,7 +1,4 @@
|
|
1 |
-
|
2 |
-
accelerate
|
3 |
-
|
4 |
-
|
5 |
-
Pillow==10.0.1
|
6 |
-
torch==2.0.1
|
7 |
-
transformers==4.33.3
|
|
|
1 |
+
diffusers
|
2 |
+
accelerate
|
3 |
+
torch
|
4 |
+
transformers
|
|
|
|
|
|