SPRIGHT-T2I / app.py
cocktailpeanut's picture
update
4104e3d
import os
import random
import gradio as gr
import numpy as np
import torch
from diffusers import DiffusionPipeline
#import spaces
import uuid
DESCRIPTION = """# SPRIGHT T2I
[SPRIGHT T2I](https://spright-t2i.github.io/) is a framework to improve the spatial consistency of text-to-image models WITHOUT compromising their fidelity aspects.
"""
if torch.cuda.is_available():
device = "cuda"
elif torch.backends.mps.is_available():
device = "mps"
else:
device = "cpu"
MAX_SEED = np.iinfo(np.int32).max
CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES", "1") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
DEFAULT_IMAGE_SIZE = 1024
torch_dtype = torch.float16
if device == "cpu" or device == "mps":
DEFAULT_IMAGE_SIZE = 512
torch_dtype = torch.float32
pipe_id = "SPRIGHT-T2I/spright-t2i-sd2"
pipe = DiffusionPipeline.from_pretrained(
pipe_id,
torch_dtype=torch_dtype,
use_safetensors=True,
).to(device)
def save_image(img):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
#@spaces.GPU
def generate(
prompt: str,
seed: int = 0,
width: int = 768,
height: int = 768,
guidance_scale: float = 7.5,
num_inference_steps: int = 50,
randomize_seed: bool = False,
progress=gr.Progress(track_tqdm=True),
):
seed = randomize_seed_fn(seed, randomize_seed)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
).images[0]
image_path = save_image(image)
print(image_path)
return [image_path], seed
examples = [
"A cat next to a suitcase",
"A candle on the left of a mouse",
"A bag on the right of a dog",
"A mouse on the top of a bowl",
]
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Gallery(label="Result", columns=1, show_label=False)
with gr.Accordion("Advanced options", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=DEFAULT_IMAGE_SIZE,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=DEFAULT_IMAGE_SIZE,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=1,
maximum=20,
step=0.1,
value=7.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=10,
maximum=100,
step=1,
value=50,
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=[result, seed],
fn=generate,
cache_examples=CACHE_EXAMPLES,
)
gr.on(
triggers=[
prompt.submit,
run_button.click,
],
fn=generate,
inputs=[prompt, seed, width, height, guidance_scale, num_inference_steps, randomize_seed],
outputs=[result, seed],
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()