Spaces:
Runtime error
Runtime error
import os | |
import random | |
import gradio as gr | |
import numpy as np | |
import torch | |
from diffusers import DiffusionPipeline | |
#import spaces | |
import uuid | |
DESCRIPTION = """# SPRIGHT T2I | |
[SPRIGHT T2I](https://spright-t2i.github.io/) is a framework to improve the spatial consistency of text-to-image models WITHOUT compromising their fidelity aspects. | |
""" | |
if torch.cuda.is_available(): | |
device = "cuda" | |
elif torch.backends.mps.is_available(): | |
device = "mps" | |
else: | |
device = "cpu" | |
MAX_SEED = np.iinfo(np.int32).max | |
CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES", "1") == "1" | |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024")) | |
DEFAULT_IMAGE_SIZE = 1024 | |
torch_dtype = torch.float16 | |
if device == "cpu" or device == "mps": | |
DEFAULT_IMAGE_SIZE = 512 | |
torch_dtype = torch.float32 | |
pipe_id = "SPRIGHT-T2I/spright-t2i-sd2" | |
pipe = DiffusionPipeline.from_pretrained( | |
pipe_id, | |
torch_dtype=torch_dtype, | |
use_safetensors=True, | |
).to(device) | |
def save_image(img): | |
unique_name = str(uuid.uuid4()) + ".png" | |
img.save(unique_name) | |
return unique_name | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
#@spaces.GPU | |
def generate( | |
prompt: str, | |
seed: int = 0, | |
width: int = 768, | |
height: int = 768, | |
guidance_scale: float = 7.5, | |
num_inference_steps: int = 50, | |
randomize_seed: bool = False, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
seed = randomize_seed_fn(seed, randomize_seed) | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe( | |
prompt=prompt, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
).images[0] | |
image_path = save_image(image) | |
print(image_path) | |
return [image_path], seed | |
examples = [ | |
"A cat next to a suitcase", | |
"A candle on the left of a mouse", | |
"A bag on the right of a dog", | |
"A mouse on the top of a bowl", | |
] | |
with gr.Blocks(css="style.css") as demo: | |
gr.Markdown(DESCRIPTION) | |
gr.DuplicateButton( | |
value="Duplicate Space for private use", | |
elem_id="duplicate-button", | |
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", | |
) | |
with gr.Group(): | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Gallery(label="Result", columns=1, show_label=False) | |
with gr.Accordion("Advanced options", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=DEFAULT_IMAGE_SIZE, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=DEFAULT_IMAGE_SIZE, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=1, | |
maximum=20, | |
step=0.1, | |
value=7.5, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=10, | |
maximum=100, | |
step=1, | |
value=50, | |
) | |
gr.Examples( | |
examples=examples, | |
inputs=prompt, | |
outputs=[result, seed], | |
fn=generate, | |
cache_examples=CACHE_EXAMPLES, | |
) | |
gr.on( | |
triggers=[ | |
prompt.submit, | |
run_button.click, | |
], | |
fn=generate, | |
inputs=[prompt, seed, width, height, guidance_scale, num_inference_steps, randomize_seed], | |
outputs=[result, seed], | |
api_name="run", | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch() | |