|
import os |
|
|
|
import gradio as gr |
|
from text_generation import Client |
|
from conversation import get_default_conv_template |
|
from transformers import AutoTokenizer |
|
from pymongo import MongoClient |
|
|
|
DB_NAME = os.getenv("MONGO_DBNAME", "taiwan-llm") |
|
USER = os.getenv("MONGO_USER") |
|
PASSWORD = os.getenv("MONGO_PASSWORD") |
|
|
|
uri = f"mongodb+srv://{USER}:{PASSWORD}@{DB_NAME}.kvwjiok.mongodb.net/?retryWrites=true&w=majority" |
|
mongo_client = MongoClient(uri) |
|
db = mongo_client[DB_NAME] |
|
conversations_collection = db['conversations'] |
|
|
|
DESCRIPTION = """ |
|
# Language Models for Taiwanese Culture |
|
|
|
<p align="center"> |
|
✍️ <a href="https://huggingface.co/spaces/yentinglin/Taiwan-LLaMa2" target="_blank">Online Demo</a> |
|
• |
|
🤗 <a href="https://huggingface.co/yentinglin" target="_blank">HF Repo</a> • 🐦 <a href="https://twitter.com/yentinglin56" target="_blank">Twitter</a> • 📃 <a href="https://arxiv.org/pdf/2305.13711.pdf" target="_blank">[Paper Coming Soon]</a> |
|
• 👨️ <a href="https://github.com/MiuLab/Taiwan-LLaMa/tree/main" target="_blank">Github Repo</a> |
|
<br/><br/> |
|
<img src="https://www.csie.ntu.edu.tw/~miulab/taiwan-llama/logo-v2.png" width="100"> <br/> |
|
</p> |
|
|
|
|
|
Taiwan-LLaMa is a fine-tuned model specifically designed for traditional mandarin applications. It is built upon the LLaMa 2 architecture and includes a pretraining phase with over 5 billion tokens and fine-tuning with over 490k multi-turn conversational data in Traditional Mandarin. |
|
|
|
## Key Features |
|
|
|
1. **Traditional Mandarin Support**: The model is fine-tuned to understand and generate text in Traditional Mandarin, making it suitable for Taiwanese culture and related applications. |
|
|
|
2. **Instruction-Tuned**: Further fine-tuned on conversational data to offer context-aware and instruction-following responses. |
|
|
|
3. **Performance on Vicuna Benchmark**: Taiwan-LLaMa's relative performance on Vicuna Benchmark is measured against models like GPT-4 and ChatGPT. It's particularly optimized for Taiwanese culture. |
|
|
|
4. **Flexible Customization**: Advanced options for controlling the model's behavior like system prompt, temperature, top-p, and top-k are available in the demo. |
|
|
|
## Model Versions |
|
|
|
Different versions of Taiwan-LLaMa are available: |
|
|
|
- **Taiwan-LLaMa v2.0 (This demo)**: Cleaner pretraining, Better post-training |
|
- **Taiwan-LLaMa v1.0**: Optimized for Taiwanese Culture |
|
- **Taiwan-LLaMa v0.9**: Partial instruction set |
|
- **Taiwan-LLaMa v0.0**: No Traditional Mandarin pretraining |
|
|
|
The models can be accessed from the provided links in the Hugging Face repository. |
|
|
|
Try out the demo to interact with Taiwan-LLaMa and experience its capabilities in handling Traditional Mandarin! |
|
""" |
|
|
|
LICENSE = """ |
|
## Licenses |
|
|
|
- Code is licensed under Apache 2.0 License. |
|
- Models are licensed under the LLAMA 2 Community License. |
|
- By using this model, you agree to the terms and conditions specified in the license. |
|
- By using this demo, you agree to share your input utterances with us to improve the model. |
|
|
|
## Acknowledgements |
|
|
|
Taiwan-LLaMa project acknowledges the efforts of the [Meta LLaMa team](https://github.com/facebookresearch/llama) and [Vicuna team](https://github.com/lm-sys/FastChat) in democratizing large language models. |
|
""" |
|
|
|
DEFAULT_SYSTEM_PROMPT = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. You are built by NTU Miulab by Yen-Ting Lin for research purpose." |
|
|
|
endpoint_url = os.environ.get("ENDPOINT_URL", "http://127.0.0.1:8080") |
|
client = Client(endpoint_url, timeout=120) |
|
eos_token = "</s>" |
|
MAX_MAX_NEW_TOKENS = 1024 |
|
DEFAULT_MAX_NEW_TOKENS = 1024 |
|
|
|
max_prompt_length = 4096 - MAX_MAX_NEW_TOKENS - 10 |
|
|
|
model_name = "yentinglin/Taiwan-LLM-7B-v2.0-chat" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown(DESCRIPTION) |
|
|
|
chatbot = gr.Chatbot() |
|
with gr.Row(): |
|
msg = gr.Textbox( |
|
container=False, |
|
show_label=False, |
|
placeholder='Type a message...', |
|
scale=10, |
|
) |
|
submit_button = gr.Button('Submit', |
|
variant='primary', |
|
scale=1, |
|
min_width=0) |
|
|
|
with gr.Row(): |
|
retry_button = gr.Button('🔄 Retry', variant='secondary') |
|
undo_button = gr.Button('↩️ Undo', variant='secondary') |
|
clear = gr.Button('🗑️ Clear', variant='secondary') |
|
|
|
saved_input = gr.State() |
|
|
|
with gr.Accordion(label='Advanced options', open=False): |
|
system_prompt = gr.Textbox(label='System prompt', |
|
value=DEFAULT_SYSTEM_PROMPT, |
|
lines=6) |
|
max_new_tokens = gr.Slider( |
|
label='Max new tokens', |
|
minimum=1, |
|
maximum=MAX_MAX_NEW_TOKENS, |
|
step=1, |
|
value=DEFAULT_MAX_NEW_TOKENS, |
|
) |
|
temperature = gr.Slider( |
|
label='Temperature', |
|
minimum=0.1, |
|
maximum=1.0, |
|
step=0.1, |
|
value=0.7, |
|
) |
|
top_p = gr.Slider( |
|
label='Top-p (nucleus sampling)', |
|
minimum=0.05, |
|
maximum=1.0, |
|
step=0.05, |
|
value=0.9, |
|
) |
|
top_k = gr.Slider( |
|
label='Top-k', |
|
minimum=1, |
|
maximum=1000, |
|
step=1, |
|
value=50, |
|
) |
|
|
|
def user(user_message, history): |
|
return "", history + [[user_message, None]] |
|
|
|
|
|
def bot(history, max_new_tokens, temperature, top_p, top_k, system_prompt): |
|
conv = get_default_conv_template("vicuna").copy() |
|
roles = {"human": conv.roles[0], "gpt": conv.roles[1]} |
|
conv.system = system_prompt |
|
for user, bot in history: |
|
conv.append_message(roles['human'], user) |
|
conv.append_message(roles["gpt"], bot) |
|
msg = conv.get_prompt() |
|
prompt_tokens = tokenizer.encode(msg) |
|
length_of_prompt = len(prompt_tokens) |
|
if length_of_prompt > max_prompt_length: |
|
msg = tokenizer.decode(prompt_tokens[-max_prompt_length + 1:]) |
|
|
|
history[-1][1] = "" |
|
for response in client.generate_stream( |
|
msg, |
|
max_new_tokens=max_new_tokens, |
|
temperature=temperature, |
|
top_p=top_p, |
|
top_k=top_k, |
|
): |
|
if not response.token.special: |
|
character = response.token.text |
|
history[-1][1] += character |
|
yield history |
|
|
|
|
|
conversation_document = { |
|
"model_name": model_name, |
|
"history": history, |
|
"system_prompt": system_prompt, |
|
"max_new_tokens": max_new_tokens, |
|
"temperature": temperature, |
|
"top_p": top_p, |
|
"top_k": top_k, |
|
} |
|
conversations_collection.insert_one(conversation_document) |
|
|
|
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( |
|
fn=bot, |
|
inputs=[ |
|
chatbot, |
|
max_new_tokens, |
|
temperature, |
|
top_p, |
|
top_k, |
|
system_prompt, |
|
], |
|
outputs=chatbot |
|
) |
|
submit_button.click( |
|
user, [msg, chatbot], [msg, chatbot], queue=False |
|
).then( |
|
fn=bot, |
|
inputs=[ |
|
chatbot, |
|
max_new_tokens, |
|
temperature, |
|
top_p, |
|
top_k, |
|
system_prompt, |
|
], |
|
outputs=chatbot |
|
) |
|
|
|
|
|
def delete_prev_fn( |
|
history: list[tuple[str, str]]) -> tuple[list[tuple[str, str]], str]: |
|
try: |
|
message, _ = history.pop() |
|
except IndexError: |
|
message = '' |
|
return history, message or '' |
|
|
|
|
|
def display_input(message: str, |
|
history: list[tuple[str, str]]) -> list[tuple[str, str]]: |
|
history.append((message, '')) |
|
return history |
|
|
|
retry_button.click( |
|
fn=delete_prev_fn, |
|
inputs=chatbot, |
|
outputs=[chatbot, saved_input], |
|
api_name=False, |
|
queue=False, |
|
).then( |
|
fn=display_input, |
|
inputs=[saved_input, chatbot], |
|
outputs=chatbot, |
|
api_name=False, |
|
queue=False, |
|
).then( |
|
fn=bot, |
|
inputs=[ |
|
chatbot, |
|
max_new_tokens, |
|
temperature, |
|
top_p, |
|
top_k, |
|
system_prompt, |
|
], |
|
outputs=chatbot, |
|
) |
|
|
|
undo_button.click( |
|
fn=delete_prev_fn, |
|
inputs=chatbot, |
|
outputs=[chatbot, saved_input], |
|
api_name=False, |
|
queue=False, |
|
).then( |
|
fn=lambda x: x, |
|
inputs=[saved_input], |
|
outputs=msg, |
|
api_name=False, |
|
queue=False, |
|
) |
|
|
|
clear.click(lambda: None, None, chatbot, queue=False) |
|
|
|
gr.Markdown(LICENSE) |
|
|
|
demo.queue(concurrency_count=4, max_size=128) |
|
demo.launch() |