import pathlib import validators import requests import gradio as gr # For running inference on the TF-Hub module. import tensorflow as tf # For downloading the image. # For drawing onto the image. import numpy as np from PIL import Image from PIL import ImageColor from PIL import ImageDraw from PIL import ImageFont print("load model...") detector = tf.saved_model.load("model/saved_model") def draw_bounding_box_on_image(image, ymin, xmin, ymax, xmax, color, font, thickness=4, display_str_list=()): """Adds a bounding box to an image.""" draw = ImageDraw.Draw(image) im_width, im_height = image.size (left, right, top, bottom) = (xmin * im_width, xmax * im_width, ymin * im_height, ymax * im_height) draw.line([(left, top), (left, bottom), (right, bottom), (right, top), (left, top)], width=thickness, fill=color) # If the total height of the display strings added to the top of the bounding # box exceeds the top of the image, stack the strings below the bounding box # instead of above. display_str_heights = [font.getsize(ds)[1] for ds in display_str_list] # Each display_str has a top and bottom margin of 0.05x. total_display_str_height = (1 + 2 * 0.05) * sum(display_str_heights) if top > total_display_str_height: text_bottom = top else: text_bottom = top + total_display_str_height # Reverse list and print from bottom to top. for display_str in display_str_list[::-1]: text_width, text_height = font.getsize(display_str) margin = np.ceil(0.05 * text_height) draw.rectangle([(left, text_bottom - text_height - 2 * margin), (left + text_width, text_bottom)], fill=color) draw.text((left + margin, text_bottom - text_height - margin), display_str, fill="black", font=font) text_bottom -= text_height - 2 * margin """Overlay labeled boxes on an image with formatted scores and label names.""" def draw_boxes(image, boxes, class_names, scores, max_boxes=10, min_score=0.1): try: font = ImageFont.truetype("/usr/share/fonts/truetype/liberation/LiberationSansNarrow-Regular.ttf", 25) except IOError: print("Font not found, using default font.") font = ImageFont.load_default() for i in range(min(boxes.shape[1], max_boxes)): if scores[0][i] >= min_score: ymin, xmin, ymax, xmax = tuple(boxes[0][i]) display_str = "{}: {}%".format(class_names[i], int(100 * scores[0][i])) color = '#00ff00' image_pil = Image.fromarray(np.uint8(image)).convert("RGB") draw_bounding_box_on_image( image_pil, ymin, xmin, ymax, xmax, color, font, display_str_list=[display_str]) np.copyto(image, np.array(image_pil)) return image def run_detector(url_input, image_input, minscore=0.1): if (validators.url(url_input)): img = Image.open(requests.get(url_input, stream=True).raw) elif (image_input): img = image_input converted_img = tf.image.convert_image_dtype(img, tf.uint8)[ tf.newaxis, ...] result = detector(converted_img) result = {key: value.numpy() for key, value in result.items()} labels = ["cyclist" for _ in range(len(result["detection_scores"][0]))] image_with_boxes = draw_boxes( np.array(img), result["detection_boxes"], labels, result["detection_scores"], min_score=minscore) return image_with_boxes demo = gr.Blocks() title = """