import pathlib import validators import requests import gradio as gr # For running inference on the TF-Hub module. import tensorflow as tf # For downloading the image. # For drawing onto the image. import numpy as np from PIL import Image from PIL import ImageColor from PIL import ImageDraw from PIL import ImageFont print("load model...") detector = tf.saved_model.load("model/saved_model") def draw_bounding_box_on_image(image, ymin, xmin, ymax, xmax, color, font, thickness=4, display_str_list=()): """Adds a bounding box to an image.""" draw = ImageDraw.Draw(image) im_width, im_height = image.size (left, right, top, bottom) = (xmin * im_width, xmax * im_width, ymin * im_height, ymax * im_height) draw.line([(left, top), (left, bottom), (right, bottom), (right, top), (left, top)], width=thickness, fill=color) # If the total height of the display strings added to the top of the bounding # box exceeds the top of the image, stack the strings below the bounding box # instead of above. display_str_heights = [font.getsize(ds)[1] for ds in display_str_list] # Each display_str has a top and bottom margin of 0.05x. total_display_str_height = (1 + 2 * 0.05) * sum(display_str_heights) if top > total_display_str_height: text_bottom = top else: text_bottom = top + total_display_str_height # Reverse list and print from bottom to top. for display_str in display_str_list[::-1]: text_width, text_height = font.getsize(display_str) margin = np.ceil(0.05 * text_height) draw.rectangle([(left, text_bottom - text_height - 2 * margin), (left + text_width, text_bottom)], fill=color) draw.text((left + margin, text_bottom - text_height - margin), display_str, fill="black", font=font) text_bottom -= text_height - 2 * margin """Overlay labeled boxes on an image with formatted scores and label names.""" def draw_boxes(image, boxes, class_names, scores, max_boxes=10, min_score=0.1): try: font = ImageFont.truetype("/usr/share/fonts/truetype/liberation/LiberationSansNarrow-Regular.ttf", 25) except IOError: print("Font not found, using default font.") font = ImageFont.load_default() for i in range(min(boxes.shape[1], max_boxes)): if scores[0][i] >= min_score: ymin, xmin, ymax, xmax = tuple(boxes[0][i]) display_str = "{}: {}%".format(class_names[i], int(100 * scores[0][i])) color = '#00ff00' image_pil = Image.fromarray(np.uint8(image)).convert("RGB") draw_bounding_box_on_image( image_pil, ymin, xmin, ymax, xmax, color, font, display_str_list=[display_str]) np.copyto(image, np.array(image_pil)) return image def run_detector(url_input, image_input, minscore=0.1): if (validators.url(url_input)): img = Image.open(requests.get(url_input, stream=True).raw) elif (image_input): img = image_input converted_img = tf.image.convert_image_dtype(img, tf.uint8)[ tf.newaxis, ...] result = detector(converted_img) result = {key: value.numpy() for key, value in result.items()} labels = ["cyclist" for _ in range(len(result["detection_scores"][0]))] image_with_boxes = draw_boxes( np.array(img), result["detection_boxes"], labels, result["detection_scores"], min_score=minscore) return image_with_boxes demo = gr.Blocks() title = """

Custom Cyclists detector

""" description = """Model created for the ECS 171 final project at UC Davis. For more information, check out the github repo cyclists-counter.""" def set_example_image(example: list) -> dict: return gr.Image.update(value=example[0]) def set_example_url(example: list) -> dict: return gr.Textbox.update(value=example[0]) urls = ["https://hips.hearstapps.com/hmg-prod.s3.amazonaws.com/images/cyclist-on-path-by-sea-royalty-free-image-1656931301.jpg?crop=0.727xw:0.699xh;0.134xw,0.169xh&resize=640:*"] with demo: gr.Markdown(title) gr.Markdown(description) slider_input = gr.Slider(minimum=0.0, maximum=1, value=0.15, label='Prediction Threshold') with gr.Tabs(): with gr.TabItem('Image URL'): with gr.Row(): url_input = gr.Textbox( lines=2, label='Enter valid image URL here..') img_output_from_url = gr.Image(shape=(640, 640)) with gr.Row(): example_url = gr.Dataset(components=[url_input], samples=[ [str(url)] for url in urls]) url_but = gr.Button('Detect') with gr.TabItem('Image Upload'): with gr.Row(): img_input = gr.Image(type='pil') img_output_from_upload = gr.Image(shape=(640, 640)) with gr.Row(): example_images = gr.Dataset(components=[img_input], samples=[[path.as_posix()] for path in sorted(pathlib.Path('images').rglob('*.jpg'))]) img_but = gr.Button('Detect') url_but.click(run_detector, inputs=[ url_input, img_input, slider_input], outputs=img_output_from_url, queue=True) img_but.click(run_detector, inputs=[ url_input, img_input, slider_input], outputs=img_output_from_upload, queue=True) example_images.click(fn=set_example_image, inputs=[ example_images], outputs=[img_input]) example_url.click(fn=set_example_url, inputs=[ example_url], outputs=[url_input]) demo.launch(enable_queue=True)