Spaces:
Configuration error
Configuration error
First version
Browse files- .gitattributes +1 -0
- app.py +185 -4
- images/velo.jpg +0 -0
- model/pipeline.config +195 -0
- model/saved_model/saved_model.pb +3 -0
- model/saved_model/variables/variables.data-00000-of-00001 +3 -0
- model/saved_model/variables/variables.index +0 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.data-00000-of-00001 filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
@@ -1,7 +1,188 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pathlib
|
2 |
+
import validators
|
3 |
+
import requests
|
4 |
import gradio as gr
|
5 |
+
# For running inference on the TF-Hub module.
|
6 |
+
import tensorflow as tf
|
7 |
|
8 |
+
# For downloading the image.
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
import tempfile
|
11 |
+
from six import BytesIO
|
12 |
|
13 |
+
# For drawing onto the image.
|
14 |
+
import numpy as np
|
15 |
+
from PIL import Image
|
16 |
+
from PIL import ImageColor
|
17 |
+
from PIL import ImageDraw
|
18 |
+
from PIL import ImageFont
|
19 |
+
from PIL import ImageOps
|
20 |
+
|
21 |
+
print("load model...")
|
22 |
+
detector = tf.saved_model.load("model")
|
23 |
+
|
24 |
+
|
25 |
+
def draw_bounding_box_on_image(image,
|
26 |
+
ymin,
|
27 |
+
xmin,
|
28 |
+
ymax,
|
29 |
+
xmax,
|
30 |
+
color,
|
31 |
+
font,
|
32 |
+
thickness=4,
|
33 |
+
display_str_list=()):
|
34 |
+
"""Adds a bounding box to an image."""
|
35 |
+
draw = ImageDraw.Draw(image)
|
36 |
+
im_width, im_height = image.size
|
37 |
+
(left, right, top, bottom) = (xmin * im_width, xmax * im_width,
|
38 |
+
ymin * im_height, ymax * im_height)
|
39 |
+
draw.line([(left, top), (left, bottom), (right, bottom), (right, top),
|
40 |
+
(left, top)],
|
41 |
+
width=thickness,
|
42 |
+
fill=color)
|
43 |
+
|
44 |
+
# If the total height of the display strings added to the top of the bounding
|
45 |
+
# box exceeds the top of the image, stack the strings below the bounding box
|
46 |
+
# instead of above.
|
47 |
+
display_str_heights = [font.getsize(ds)[1] for ds in display_str_list]
|
48 |
+
# Each display_str has a top and bottom margin of 0.05x.
|
49 |
+
total_display_str_height = (1 + 2 * 0.05) * sum(display_str_heights)
|
50 |
+
|
51 |
+
if top > total_display_str_height:
|
52 |
+
text_bottom = top
|
53 |
+
else:
|
54 |
+
text_bottom = top + total_display_str_height
|
55 |
+
# Reverse list and print from bottom to top.
|
56 |
+
for display_str in display_str_list[::-1]:
|
57 |
+
text_width, text_height = font.getsize(display_str)
|
58 |
+
margin = np.ceil(0.05 * text_height)
|
59 |
+
draw.rectangle([(left, text_bottom - text_height - 2 * margin),
|
60 |
+
(left + text_width, text_bottom)],
|
61 |
+
fill=color)
|
62 |
+
draw.text((left + margin, text_bottom - text_height - margin),
|
63 |
+
display_str,
|
64 |
+
fill="black",
|
65 |
+
font=font)
|
66 |
+
text_bottom -= text_height - 2 * margin
|
67 |
+
|
68 |
+
|
69 |
+
"""Overlay labeled boxes on an image with formatted scores and label names."""
|
70 |
+
|
71 |
+
|
72 |
+
def draw_boxes(image, boxes, class_names, scores, max_boxes=10, min_score=0.1):
|
73 |
+
colors = list(ImageColor.colormap.values())
|
74 |
+
|
75 |
+
try:
|
76 |
+
font = ImageFont.truetype("/usr/share/fonts/truetype/liberation/LiberationSansNarrow-Regular.ttf",
|
77 |
+
25)
|
78 |
+
except IOError:
|
79 |
+
print("Font not found, using default font.")
|
80 |
+
font = ImageFont.load_default()
|
81 |
+
|
82 |
+
for i in range(min(boxes.shape[0], max_boxes)):
|
83 |
+
if scores[i][0] >= min_score:
|
84 |
+
ymin, xmin, ymax, xmax = tuple(boxes[i][0])
|
85 |
+
display_str = "{}: {}%".format(class_names[i],
|
86 |
+
int(100 * scores[i][0]))
|
87 |
+
color = colors[hash(class_names[i]) % len(colors)]
|
88 |
+
image_pil = Image.fromarray(np.uint8(image)).convert("RGB")
|
89 |
+
draw_bounding_box_on_image(
|
90 |
+
image_pil,
|
91 |
+
ymin,
|
92 |
+
xmin,
|
93 |
+
ymax,
|
94 |
+
xmax,
|
95 |
+
color,
|
96 |
+
font,
|
97 |
+
display_str_list=[display_str])
|
98 |
+
np.copyto(image, np.array(image_pil))
|
99 |
+
return image
|
100 |
+
|
101 |
+
|
102 |
+
def run_detector(url_input, image_input, minscore=0.1):
|
103 |
+
|
104 |
+
if (validators.url(url_input)):
|
105 |
+
img = Image.open(requests.get(url_input, stream=True).raw)
|
106 |
+
elif (image_input):
|
107 |
+
img = image_input
|
108 |
+
|
109 |
+
converted_img = tf.image.convert_image_dtype(img, tf.uint8)[
|
110 |
+
tf.newaxis, ...]
|
111 |
+
result = detector(converted_img)
|
112 |
+
|
113 |
+
result = {key: value.numpy() for key, value in result.items()}
|
114 |
+
|
115 |
+
print("Found %d objects." % len(result["detection_scores"]))
|
116 |
+
labels = ["cyclist" for _ in range(len(result["detection_scores"]))]
|
117 |
+
print(labels)
|
118 |
+
|
119 |
+
image_with_boxes = draw_boxes(
|
120 |
+
np.array(img), result["detection_boxes"],
|
121 |
+
labels, result["detection_scores"], min_score=minscore)
|
122 |
+
|
123 |
+
return image_with_boxes
|
124 |
+
|
125 |
+
|
126 |
+
css = '''
|
127 |
+
h1#title {
|
128 |
+
text-align: center;
|
129 |
+
}
|
130 |
+
'''
|
131 |
+
demo = gr.Blocks(css=css)
|
132 |
+
|
133 |
+
title = """<h1 id="title">Custom Cyclists detector</h1>"""
|
134 |
+
description = "todo"
|
135 |
+
|
136 |
+
|
137 |
+
def set_example_image(example: list) -> dict:
|
138 |
+
return gr.Image.update(value=example[0])
|
139 |
+
|
140 |
+
|
141 |
+
def set_example_url(example: list) -> dict:
|
142 |
+
return gr.Textbox.update(value=example[0])
|
143 |
+
|
144 |
+
|
145 |
+
urls = ["https://hips.hearstapps.com/hmg-prod.s3.amazonaws.com/images/cyclist-on-path-by-sea-royalty-free-image-1656931301.jpg?crop=0.727xw:0.699xh;0.134xw,0.169xh&resize=640:*"]
|
146 |
+
|
147 |
+
with demo:
|
148 |
+
gr.Markdown(title)
|
149 |
+
gr.Markdown(description)
|
150 |
+
slider_input = gr.Slider(minimum=0.0, maximum=1,
|
151 |
+
value=0.2, label='Prediction Threshold')
|
152 |
+
|
153 |
+
with gr.Tabs():
|
154 |
+
with gr.TabItem('Image URL'):
|
155 |
+
with gr.Row():
|
156 |
+
url_input = gr.Textbox(
|
157 |
+
lines=2, label='Enter valid image URL here..')
|
158 |
+
img_output_from_url = gr.Image(shape=(640, 640))
|
159 |
+
|
160 |
+
with gr.Row():
|
161 |
+
example_url = gr.Dataset(components=[url_input], samples=[
|
162 |
+
[str(url)] for url in urls])
|
163 |
+
|
164 |
+
url_but = gr.Button('Detect')
|
165 |
+
|
166 |
+
with gr.TabItem('Image Upload'):
|
167 |
+
with gr.Row():
|
168 |
+
img_input = gr.Image(type='pil')
|
169 |
+
img_output_from_upload = gr.Image(shape=(650, 650))
|
170 |
+
|
171 |
+
with gr.Row():
|
172 |
+
example_images = gr.Dataset(components=[img_input],
|
173 |
+
samples=[[path.as_posix()]
|
174 |
+
for path in sorted(pathlib.Path('images').rglob('*.jpg'))])
|
175 |
+
|
176 |
+
img_but = gr.Button('Detect')
|
177 |
+
|
178 |
+
url_but.click(run_detector, inputs=[
|
179 |
+
url_input, img_input, slider_input], outputs=img_output_from_url, queue=True)
|
180 |
+
img_but.click(run_detector, inputs=[
|
181 |
+
url_input, img_input, slider_input], outputs=img_output_from_upload, queue=True)
|
182 |
+
example_images.click(fn=set_example_image, inputs=[
|
183 |
+
example_images], outputs=[img_input])
|
184 |
+
example_url.click(fn=set_example_url, inputs=[
|
185 |
+
example_url], outputs=[url_input])
|
186 |
+
|
187 |
+
|
188 |
+
demo.launch(enable_queue=True)
|
images/velo.jpg
ADDED
model/pipeline.config
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model {
|
2 |
+
ssd {
|
3 |
+
num_classes: 1
|
4 |
+
image_resizer {
|
5 |
+
keep_aspect_ratio_resizer {
|
6 |
+
min_dimension: 640
|
7 |
+
max_dimension: 640
|
8 |
+
pad_to_max_dimension: true
|
9 |
+
}
|
10 |
+
}
|
11 |
+
feature_extractor {
|
12 |
+
type: "ssd_efficientnet-b1_bifpn_keras"
|
13 |
+
conv_hyperparams {
|
14 |
+
regularizer {
|
15 |
+
l2_regularizer {
|
16 |
+
weight: 4e-05
|
17 |
+
}
|
18 |
+
}
|
19 |
+
initializer {
|
20 |
+
truncated_normal_initializer {
|
21 |
+
mean: 0.0
|
22 |
+
stddev: 0.03
|
23 |
+
}
|
24 |
+
}
|
25 |
+
activation: SWISH
|
26 |
+
batch_norm {
|
27 |
+
decay: 0.99
|
28 |
+
scale: true
|
29 |
+
epsilon: 0.001
|
30 |
+
}
|
31 |
+
force_use_bias: true
|
32 |
+
}
|
33 |
+
bifpn {
|
34 |
+
min_level: 3
|
35 |
+
max_level: 7
|
36 |
+
num_iterations: 4
|
37 |
+
num_filters: 88
|
38 |
+
}
|
39 |
+
}
|
40 |
+
box_coder {
|
41 |
+
faster_rcnn_box_coder {
|
42 |
+
y_scale: 1.0
|
43 |
+
x_scale: 1.0
|
44 |
+
height_scale: 1.0
|
45 |
+
width_scale: 1.0
|
46 |
+
}
|
47 |
+
}
|
48 |
+
matcher {
|
49 |
+
argmax_matcher {
|
50 |
+
matched_threshold: 0.5
|
51 |
+
unmatched_threshold: 0.5
|
52 |
+
ignore_thresholds: false
|
53 |
+
negatives_lower_than_unmatched: true
|
54 |
+
force_match_for_each_row: true
|
55 |
+
use_matmul_gather: true
|
56 |
+
}
|
57 |
+
}
|
58 |
+
similarity_calculator {
|
59 |
+
iou_similarity {
|
60 |
+
}
|
61 |
+
}
|
62 |
+
box_predictor {
|
63 |
+
weight_shared_convolutional_box_predictor {
|
64 |
+
conv_hyperparams {
|
65 |
+
regularizer {
|
66 |
+
l2_regularizer {
|
67 |
+
weight: 4e-05
|
68 |
+
}
|
69 |
+
}
|
70 |
+
initializer {
|
71 |
+
random_normal_initializer {
|
72 |
+
mean: 0.0
|
73 |
+
stddev: 0.01
|
74 |
+
}
|
75 |
+
}
|
76 |
+
activation: SWISH
|
77 |
+
batch_norm {
|
78 |
+
decay: 0.99
|
79 |
+
scale: true
|
80 |
+
epsilon: 0.001
|
81 |
+
}
|
82 |
+
force_use_bias: true
|
83 |
+
}
|
84 |
+
depth: 88
|
85 |
+
num_layers_before_predictor: 3
|
86 |
+
kernel_size: 3
|
87 |
+
class_prediction_bias_init: -4.6
|
88 |
+
use_depthwise: true
|
89 |
+
}
|
90 |
+
}
|
91 |
+
anchor_generator {
|
92 |
+
multiscale_anchor_generator {
|
93 |
+
min_level: 3
|
94 |
+
max_level: 7
|
95 |
+
anchor_scale: 4.0
|
96 |
+
aspect_ratios: 1.0
|
97 |
+
aspect_ratios: 2.0
|
98 |
+
aspect_ratios: 0.5
|
99 |
+
scales_per_octave: 3
|
100 |
+
}
|
101 |
+
}
|
102 |
+
post_processing {
|
103 |
+
batch_non_max_suppression {
|
104 |
+
score_threshold: 1e-08
|
105 |
+
iou_threshold: 0.5
|
106 |
+
max_detections_per_class: 100
|
107 |
+
max_total_detections: 100
|
108 |
+
}
|
109 |
+
score_converter: SIGMOID
|
110 |
+
}
|
111 |
+
normalize_loss_by_num_matches: true
|
112 |
+
loss {
|
113 |
+
localization_loss {
|
114 |
+
weighted_smooth_l1 {
|
115 |
+
}
|
116 |
+
}
|
117 |
+
classification_loss {
|
118 |
+
weighted_sigmoid_focal {
|
119 |
+
gamma: 1.5
|
120 |
+
alpha: 0.25
|
121 |
+
}
|
122 |
+
}
|
123 |
+
classification_weight: 1.0
|
124 |
+
localization_weight: 1.0
|
125 |
+
}
|
126 |
+
encode_background_as_zeros: true
|
127 |
+
normalize_loc_loss_by_codesize: true
|
128 |
+
inplace_batchnorm_update: true
|
129 |
+
freeze_batchnorm: false
|
130 |
+
add_background_class: false
|
131 |
+
}
|
132 |
+
}
|
133 |
+
train_config {
|
134 |
+
batch_size: 3
|
135 |
+
data_augmentation_options {
|
136 |
+
random_horizontal_flip {
|
137 |
+
probability: 0.3
|
138 |
+
}
|
139 |
+
}
|
140 |
+
data_augmentation_options {
|
141 |
+
random_scale_crop_and_pad_to_square {
|
142 |
+
output_size: 640
|
143 |
+
scale_min: 0.1
|
144 |
+
scale_max: 2.0
|
145 |
+
}
|
146 |
+
}
|
147 |
+
data_augmentation_options {
|
148 |
+
random_distort_color {
|
149 |
+
color_ordering: 1
|
150 |
+
}
|
151 |
+
}
|
152 |
+
sync_replicas: true
|
153 |
+
optimizer {
|
154 |
+
momentum_optimizer {
|
155 |
+
learning_rate {
|
156 |
+
cosine_decay_learning_rate {
|
157 |
+
learning_rate_base: 0.02
|
158 |
+
total_steps: 300000
|
159 |
+
warmup_learning_rate: 0.001
|
160 |
+
warmup_steps: 2500
|
161 |
+
}
|
162 |
+
}
|
163 |
+
momentum_optimizer_value: 0.9
|
164 |
+
}
|
165 |
+
use_moving_average: false
|
166 |
+
}
|
167 |
+
fine_tune_checkpoint: "pre-trained-models/efficientdet_d1_coco17_tpu-32/checkpoint/ckpt-0"
|
168 |
+
num_steps: 300000
|
169 |
+
startup_delay_steps: 0.0
|
170 |
+
replicas_to_aggregate: 8
|
171 |
+
max_number_of_boxes: 100
|
172 |
+
unpad_groundtruth_tensors: false
|
173 |
+
fine_tune_checkpoint_type: "detection"
|
174 |
+
use_bfloat16: false
|
175 |
+
fine_tune_checkpoint_version: V2
|
176 |
+
}
|
177 |
+
train_input_reader {
|
178 |
+
label_map_path: "annotations/label_map.pbtxt"
|
179 |
+
tf_record_input_reader {
|
180 |
+
input_path: "annotations/train.record"
|
181 |
+
}
|
182 |
+
}
|
183 |
+
eval_config {
|
184 |
+
metrics_set: "coco_detection_metrics"
|
185 |
+
use_moving_averages: false
|
186 |
+
batch_size: 1
|
187 |
+
}
|
188 |
+
eval_input_reader {
|
189 |
+
label_map_path: "annotations/label_map.pbtxt"
|
190 |
+
shuffle: true
|
191 |
+
num_epochs: 1
|
192 |
+
tf_record_input_reader {
|
193 |
+
input_path: "annotations/validation.record"
|
194 |
+
}
|
195 |
+
}
|
model/saved_model/saved_model.pb
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a8935bf4db280c457ea008e4f1f86463d8d9f6c6ae4320b3a30150859c3c298f
|
3 |
+
size 22291244
|
model/saved_model/variables/variables.data-00000-of-00001
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1da925cefb226e8bccd26e171f658e4f237cb96e0e576db580e3c13c81d369c9
|
3 |
+
size 33885404
|
model/saved_model/variables/variables.index
ADDED
Binary file (50.5 kB). View file
|
|