cjayic commited on
Commit
d27bdac
1 Parent(s): a85f900
app.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import math
4
+ import torch
5
+ import torchaudio
6
+ from torch import nn
7
+ from torch.nn import functional as F
8
+ from torch.utils.data import DataLoader
9
+
10
+ import commons
11
+ import utils
12
+ from data_utils import UnitAudioLoader, UnitAudioCollate
13
+ from models import SynthesizerTrn
14
+
15
+ import gradio
16
+
17
+ hubert = torch.hub.load("bshall/hubert:main", "hubert_soft")
18
+
19
+ hps = utils.get_hparams_from_file("configs/sovits_ow2.json")
20
+
21
+ net_g = SynthesizerTrn(
22
+ hps.data.filter_length // 2 + 1,
23
+ hps.train.segment_size // hps.data.hop_length,
24
+ n_speakers=hps.data.n_speakers,
25
+ **hps.model)
26
+ _ = net_g.eval()
27
+
28
+ _ = utils.load_checkpoint("logs/ow2/G_195000.pth", net_g, None)
29
+
30
+
31
+ def infer(audio, speaker_id, pitch_shift, length_scale, noise_scale=.667, noise_scale_w=0.8):
32
+ fname = audio
33
+ source, sr = torchaudio.load(fname)
34
+
35
+ source = torchaudio.functional.pitch_shift(source, sr, int(pitch_shift))#, n_fft=256)
36
+ source = torchaudio.functional.resample(source, sr, 16000)
37
+ source = torch.mean(source, dim=0).unsqueeze(0)
38
+ source = source.unsqueeze(0)
39
+
40
+ with torch.inference_mode():
41
+ # Extract speech units
42
+ unit = hubert.units(source)
43
+ unit_lengths = torch.LongTensor([unit.size(1)])
44
+
45
+ # for multi-speaker inference
46
+ sid = torch.LongTensor([speaker_id])
47
+
48
+ # Synthesize audio
49
+ audio_out = net_g.infer(unit, unit_lengths, sid, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale)[0][0,0].data.float().numpy()
50
+
51
+ return (22050, audio_out)
52
+
53
+ demo = gradio.Interface(
54
+ fn=infer,
55
+ inputs=[
56
+ gradio.Audio(label="Input Audio", type="filepath"),
57
+ gradio.Dropdown(label="Target Voice", choices=["Ana", "Ashe", "Baptiste", "Brigitte", "Cassidy", "Doomfist", "D.Va", "Echo", "Genji", "Hanzo", "Junker Queen", "Junkrat", "Kiriko", "Lúcio", "Mei", "Mercy", "Moira", "Orisa", "Pharah", "Reaper", "Reinhardt", "Roadhog", "Sigma", "Sojourn", "Soldier_ 76", "Sombra", "Symmetra", "Torbjörn", "Tracer", "Widowmaker", "Winston", "Zarya", "Zenyatta"], type="index", value="Ana"),
58
+ gradio.Slider(label="Pitch Shift Input (+12 = up one octave)", minimum=-12.0, maximum=12.0, value=0, step=1),
59
+ gradio.Slider(label="Length Factor", minimum=0.1, maximum=2.0, value=1.0),
60
+ gradio.Slider(label="Noise Scale (higher = more expressive and erratic)", minimum=0.0, maximum=2.0, value=.667),
61
+ gradio.Slider(label="Noise Scale W (higher = more variation in cadence)", minimum=0.0, maximum=2.0, value=.8)
62
+ ],
63
+ outputs=[gradio.Audio(label="Audio as Target Voice")],
64
+ )
65
+ #demo.launch(share=True)
66
+ demo.launch(server_name="0.0.0.0")
attentions.py ADDED
@@ -0,0 +1,303 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import numpy as np
4
+ import torch
5
+ from torch import nn
6
+ from torch.nn import functional as F
7
+
8
+ import commons
9
+ import modules
10
+ from modules import LayerNorm
11
+
12
+
13
+ class Encoder(nn.Module):
14
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
15
+ super().__init__()
16
+ self.hidden_channels = hidden_channels
17
+ self.filter_channels = filter_channels
18
+ self.n_heads = n_heads
19
+ self.n_layers = n_layers
20
+ self.kernel_size = kernel_size
21
+ self.p_dropout = p_dropout
22
+ self.window_size = window_size
23
+
24
+ self.drop = nn.Dropout(p_dropout)
25
+ self.attn_layers = nn.ModuleList()
26
+ self.norm_layers_1 = nn.ModuleList()
27
+ self.ffn_layers = nn.ModuleList()
28
+ self.norm_layers_2 = nn.ModuleList()
29
+ for i in range(self.n_layers):
30
+ self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
31
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
32
+ self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
33
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
34
+
35
+ def forward(self, x, x_mask):
36
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
37
+ x = x * x_mask
38
+ for i in range(self.n_layers):
39
+ y = self.attn_layers[i](x, x, attn_mask)
40
+ y = self.drop(y)
41
+ x = self.norm_layers_1[i](x + y)
42
+
43
+ y = self.ffn_layers[i](x, x_mask)
44
+ y = self.drop(y)
45
+ x = self.norm_layers_2[i](x + y)
46
+ x = x * x_mask
47
+ return x
48
+
49
+
50
+ class Decoder(nn.Module):
51
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
52
+ super().__init__()
53
+ self.hidden_channels = hidden_channels
54
+ self.filter_channels = filter_channels
55
+ self.n_heads = n_heads
56
+ self.n_layers = n_layers
57
+ self.kernel_size = kernel_size
58
+ self.p_dropout = p_dropout
59
+ self.proximal_bias = proximal_bias
60
+ self.proximal_init = proximal_init
61
+
62
+ self.drop = nn.Dropout(p_dropout)
63
+ self.self_attn_layers = nn.ModuleList()
64
+ self.norm_layers_0 = nn.ModuleList()
65
+ self.encdec_attn_layers = nn.ModuleList()
66
+ self.norm_layers_1 = nn.ModuleList()
67
+ self.ffn_layers = nn.ModuleList()
68
+ self.norm_layers_2 = nn.ModuleList()
69
+ for i in range(self.n_layers):
70
+ self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
71
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
72
+ self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
73
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
74
+ self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
75
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
76
+
77
+ def forward(self, x, x_mask, h, h_mask):
78
+ """
79
+ x: decoder input
80
+ h: encoder output
81
+ """
82
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
83
+ encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
84
+ x = x * x_mask
85
+ for i in range(self.n_layers):
86
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
87
+ y = self.drop(y)
88
+ x = self.norm_layers_0[i](x + y)
89
+
90
+ y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
91
+ y = self.drop(y)
92
+ x = self.norm_layers_1[i](x + y)
93
+
94
+ y = self.ffn_layers[i](x, x_mask)
95
+ y = self.drop(y)
96
+ x = self.norm_layers_2[i](x + y)
97
+ x = x * x_mask
98
+ return x
99
+
100
+
101
+ class MultiHeadAttention(nn.Module):
102
+ def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
103
+ super().__init__()
104
+ assert channels % n_heads == 0
105
+
106
+ self.channels = channels
107
+ self.out_channels = out_channels
108
+ self.n_heads = n_heads
109
+ self.p_dropout = p_dropout
110
+ self.window_size = window_size
111
+ self.heads_share = heads_share
112
+ self.block_length = block_length
113
+ self.proximal_bias = proximal_bias
114
+ self.proximal_init = proximal_init
115
+ self.attn = None
116
+
117
+ self.k_channels = channels // n_heads
118
+ self.conv_q = nn.Conv1d(channels, channels, 1)
119
+ self.conv_k = nn.Conv1d(channels, channels, 1)
120
+ self.conv_v = nn.Conv1d(channels, channels, 1)
121
+ self.conv_o = nn.Conv1d(channels, out_channels, 1)
122
+ self.drop = nn.Dropout(p_dropout)
123
+
124
+ if window_size is not None:
125
+ n_heads_rel = 1 if heads_share else n_heads
126
+ rel_stddev = self.k_channels**-0.5
127
+ self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
128
+ self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
129
+
130
+ nn.init.xavier_uniform_(self.conv_q.weight)
131
+ nn.init.xavier_uniform_(self.conv_k.weight)
132
+ nn.init.xavier_uniform_(self.conv_v.weight)
133
+ if proximal_init:
134
+ with torch.no_grad():
135
+ self.conv_k.weight.copy_(self.conv_q.weight)
136
+ self.conv_k.bias.copy_(self.conv_q.bias)
137
+
138
+ def forward(self, x, c, attn_mask=None):
139
+ q = self.conv_q(x)
140
+ k = self.conv_k(c)
141
+ v = self.conv_v(c)
142
+
143
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
144
+
145
+ x = self.conv_o(x)
146
+ return x
147
+
148
+ def attention(self, query, key, value, mask=None):
149
+ # reshape [b, d, t] -> [b, n_h, t, d_k]
150
+ b, d, t_s, t_t = (*key.size(), query.size(2))
151
+ query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
152
+ key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
153
+ value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
154
+
155
+ scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
156
+ if self.window_size is not None:
157
+ assert t_s == t_t, "Relative attention is only available for self-attention."
158
+ key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
159
+ rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
160
+ scores_local = self._relative_position_to_absolute_position(rel_logits)
161
+ scores = scores + scores_local
162
+ if self.proximal_bias:
163
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
164
+ scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
165
+ if mask is not None:
166
+ scores = scores.masked_fill(mask == 0, -1e4)
167
+ if self.block_length is not None:
168
+ assert t_s == t_t, "Local attention is only available for self-attention."
169
+ block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
170
+ scores = scores.masked_fill(block_mask == 0, -1e4)
171
+ p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
172
+ p_attn = self.drop(p_attn)
173
+ output = torch.matmul(p_attn, value)
174
+ if self.window_size is not None:
175
+ relative_weights = self._absolute_position_to_relative_position(p_attn)
176
+ value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
177
+ output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
178
+ output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
179
+ return output, p_attn
180
+
181
+ def _matmul_with_relative_values(self, x, y):
182
+ """
183
+ x: [b, h, l, m]
184
+ y: [h or 1, m, d]
185
+ ret: [b, h, l, d]
186
+ """
187
+ ret = torch.matmul(x, y.unsqueeze(0))
188
+ return ret
189
+
190
+ def _matmul_with_relative_keys(self, x, y):
191
+ """
192
+ x: [b, h, l, d]
193
+ y: [h or 1, m, d]
194
+ ret: [b, h, l, m]
195
+ """
196
+ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
197
+ return ret
198
+
199
+ def _get_relative_embeddings(self, relative_embeddings, length):
200
+ max_relative_position = 2 * self.window_size + 1
201
+ # Pad first before slice to avoid using cond ops.
202
+ pad_length = max(length - (self.window_size + 1), 0)
203
+ slice_start_position = max((self.window_size + 1) - length, 0)
204
+ slice_end_position = slice_start_position + 2 * length - 1
205
+ if pad_length > 0:
206
+ padded_relative_embeddings = F.pad(
207
+ relative_embeddings,
208
+ commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
209
+ else:
210
+ padded_relative_embeddings = relative_embeddings
211
+ used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
212
+ return used_relative_embeddings
213
+
214
+ def _relative_position_to_absolute_position(self, x):
215
+ """
216
+ x: [b, h, l, 2*l-1]
217
+ ret: [b, h, l, l]
218
+ """
219
+ batch, heads, length, _ = x.size()
220
+ # Concat columns of pad to shift from relative to absolute indexing.
221
+ x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
222
+
223
+ # Concat extra elements so to add up to shape (len+1, 2*len-1).
224
+ x_flat = x.view([batch, heads, length * 2 * length])
225
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
226
+
227
+ # Reshape and slice out the padded elements.
228
+ x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
229
+ return x_final
230
+
231
+ def _absolute_position_to_relative_position(self, x):
232
+ """
233
+ x: [b, h, l, l]
234
+ ret: [b, h, l, 2*l-1]
235
+ """
236
+ batch, heads, length, _ = x.size()
237
+ # padd along column
238
+ x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
239
+ x_flat = x.view([batch, heads, length**2 + length*(length -1)])
240
+ # add 0's in the beginning that will skew the elements after reshape
241
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
242
+ x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
243
+ return x_final
244
+
245
+ def _attention_bias_proximal(self, length):
246
+ """Bias for self-attention to encourage attention to close positions.
247
+ Args:
248
+ length: an integer scalar.
249
+ Returns:
250
+ a Tensor with shape [1, 1, length, length]
251
+ """
252
+ r = torch.arange(length, dtype=torch.float32)
253
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
254
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
255
+
256
+
257
+ class FFN(nn.Module):
258
+ def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
259
+ super().__init__()
260
+ self.in_channels = in_channels
261
+ self.out_channels = out_channels
262
+ self.filter_channels = filter_channels
263
+ self.kernel_size = kernel_size
264
+ self.p_dropout = p_dropout
265
+ self.activation = activation
266
+ self.causal = causal
267
+
268
+ if causal:
269
+ self.padding = self._causal_padding
270
+ else:
271
+ self.padding = self._same_padding
272
+
273
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
274
+ self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
275
+ self.drop = nn.Dropout(p_dropout)
276
+
277
+ def forward(self, x, x_mask):
278
+ x = self.conv_1(self.padding(x * x_mask))
279
+ if self.activation == "gelu":
280
+ x = x * torch.sigmoid(1.702 * x)
281
+ else:
282
+ x = torch.relu(x)
283
+ x = self.drop(x)
284
+ x = self.conv_2(self.padding(x * x_mask))
285
+ return x * x_mask
286
+
287
+ def _causal_padding(self, x):
288
+ if self.kernel_size == 1:
289
+ return x
290
+ pad_l = self.kernel_size - 1
291
+ pad_r = 0
292
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
293
+ x = F.pad(x, commons.convert_pad_shape(padding))
294
+ return x
295
+
296
+ def _same_padding(self, x):
297
+ if self.kernel_size == 1:
298
+ return x
299
+ pad_l = (self.kernel_size - 1) // 2
300
+ pad_r = self.kernel_size // 2
301
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
302
+ x = F.pad(x, commons.convert_pad_shape(padding))
303
+ return x
commons.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import numpy as np
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+
8
+ def init_weights(m, mean=0.0, std=0.01):
9
+ classname = m.__class__.__name__
10
+ if classname.find("Conv") != -1:
11
+ m.weight.data.normal_(mean, std)
12
+
13
+
14
+ def get_padding(kernel_size, dilation=1):
15
+ return int((kernel_size*dilation - dilation)/2)
16
+
17
+
18
+ def convert_pad_shape(pad_shape):
19
+ l = pad_shape[::-1]
20
+ pad_shape = [item for sublist in l for item in sublist]
21
+ return pad_shape
22
+
23
+
24
+ def intersperse(lst, item):
25
+ result = [item] * (len(lst) * 2 + 1)
26
+ result[1::2] = lst
27
+ return result
28
+
29
+
30
+ def kl_divergence(m_p, logs_p, m_q, logs_q):
31
+ """KL(P||Q)"""
32
+ kl = (logs_q - logs_p) - 0.5
33
+ kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
34
+ return kl
35
+
36
+
37
+ def rand_gumbel(shape):
38
+ """Sample from the Gumbel distribution, protect from overflows."""
39
+ uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
40
+ return -torch.log(-torch.log(uniform_samples))
41
+
42
+
43
+ def rand_gumbel_like(x):
44
+ g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
45
+ return g
46
+
47
+
48
+ def slice_segments(x, ids_str, segment_size=4):
49
+ ret = torch.zeros_like(x[:, :, :segment_size])
50
+ for i in range(x.size(0)):
51
+ idx_str = ids_str[i]
52
+ idx_end = idx_str + segment_size
53
+ ret[i] = x[i, :, idx_str:idx_end]
54
+ return ret
55
+
56
+
57
+ def rand_slice_segments(x, x_lengths=None, segment_size=4):
58
+ b, d, t = x.size()
59
+ if x_lengths is None:
60
+ x_lengths = t
61
+ ids_str_max = x_lengths - segment_size + 1
62
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
63
+ ret = slice_segments(x, ids_str, segment_size)
64
+ return ret, ids_str
65
+
66
+
67
+ def get_timing_signal_1d(
68
+ length, channels, min_timescale=1.0, max_timescale=1.0e4):
69
+ position = torch.arange(length, dtype=torch.float)
70
+ num_timescales = channels // 2
71
+ log_timescale_increment = (
72
+ math.log(float(max_timescale) / float(min_timescale)) /
73
+ (num_timescales - 1))
74
+ inv_timescales = min_timescale * torch.exp(
75
+ torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
76
+ scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
77
+ signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
78
+ signal = F.pad(signal, [0, 0, 0, channels % 2])
79
+ signal = signal.view(1, channels, length)
80
+ return signal
81
+
82
+
83
+ def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
84
+ b, channels, length = x.size()
85
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
86
+ return x + signal.to(dtype=x.dtype, device=x.device)
87
+
88
+
89
+ def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
90
+ b, channels, length = x.size()
91
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
92
+ return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
93
+
94
+
95
+ def subsequent_mask(length):
96
+ mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
97
+ return mask
98
+
99
+
100
+ @torch.jit.script
101
+ def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
102
+ n_channels_int = n_channels[0]
103
+ in_act = input_a + input_b
104
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
105
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
106
+ acts = t_act * s_act
107
+ return acts
108
+
109
+
110
+ def convert_pad_shape(pad_shape):
111
+ l = pad_shape[::-1]
112
+ pad_shape = [item for sublist in l for item in sublist]
113
+ return pad_shape
114
+
115
+
116
+ def shift_1d(x):
117
+ x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
118
+ return x
119
+
120
+
121
+ def sequence_mask(length, max_length=None):
122
+ if max_length is None:
123
+ max_length = length.max()
124
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
125
+ return x.unsqueeze(0) < length.unsqueeze(1)
126
+
127
+
128
+ def generate_path(duration, mask):
129
+ """
130
+ duration: [b, 1, t_x]
131
+ mask: [b, 1, t_y, t_x]
132
+ """
133
+ device = duration.device
134
+
135
+ b, _, t_y, t_x = mask.shape
136
+ cum_duration = torch.cumsum(duration, -1)
137
+
138
+ cum_duration_flat = cum_duration.view(b * t_x)
139
+ path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
140
+ path = path.view(b, t_x, t_y)
141
+ path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
142
+ path = path.unsqueeze(1).transpose(2,3) * mask
143
+ return path
144
+
145
+
146
+ def clip_grad_value_(parameters, clip_value, norm_type=2):
147
+ if isinstance(parameters, torch.Tensor):
148
+ parameters = [parameters]
149
+ parameters = list(filter(lambda p: p.grad is not None, parameters))
150
+ norm_type = float(norm_type)
151
+ if clip_value is not None:
152
+ clip_value = float(clip_value)
153
+
154
+ total_norm = 0
155
+ for p in parameters:
156
+ param_norm = p.grad.data.norm(norm_type)
157
+ total_norm += param_norm.item() ** norm_type
158
+ if clip_value is not None:
159
+ p.grad.data.clamp_(min=-clip_value, max=clip_value)
160
+ total_norm = total_norm ** (1. / norm_type)
161
+ return total_norm
configs/sovits_ow2.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 200,
4
+ "eval_interval": 5000,
5
+ "seed": 1234,
6
+ "epochs": 10000,
7
+ "learning_rate": 2e-4,
8
+ "betas": [0.8, 0.99],
9
+ "eps": 1e-9,
10
+ "batch_size": 10,
11
+ "fp16_run": true,
12
+ "lr_decay": 0.999875,
13
+ "segment_size": 8192,
14
+ "init_lr_ratio": 1,
15
+ "warmup_epochs": 0,
16
+ "c_mel": 45,
17
+ "c_kl": 1.0
18
+ },
19
+ "data": {
20
+ "training_files":"filelists/train_ow2_filelist_idx.txt",
21
+ "validation_files":"filelists/val_ow2_filelist_idx.txt",
22
+ "max_wav_value": 32768.0,
23
+ "sampling_rate": 22050,
24
+ "filter_length": 1024,
25
+ "hop_length": 256,
26
+ "win_length": 1024,
27
+ "n_mel_channels": 80,
28
+ "mel_fmin": 0.0,
29
+ "mel_fmax": null,
30
+ "add_blank": true,
31
+ "n_speakers": 33
32
+ },
33
+ "model": {
34
+ "inter_channels": 192,
35
+ "hidden_channels": 256,
36
+ "filter_channels": 768,
37
+ "n_heads": 2,
38
+ "n_layers": 6,
39
+ "kernel_size": 3,
40
+ "p_dropout": 0.1,
41
+ "resblock": "1",
42
+ "resblock_kernel_sizes": [3,7,11],
43
+ "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
44
+ "upsample_rates": [8,8,2,2],
45
+ "upsample_initial_channel": 512,
46
+ "upsample_kernel_sizes": [16,16,4,4],
47
+ "n_layers_q": 3,
48
+ "use_spectral_norm": false,
49
+ "gin_channels": 256
50
+ }
51
+ }
data_utils.py ADDED
@@ -0,0 +1,331 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+ import os
3
+ import random
4
+ import numpy as np
5
+ import torch
6
+ import torch.utils.data
7
+
8
+ import commons
9
+ from mel_processing import spectrogram_torch
10
+ from utils import load_wav_to_torch, load_unit_audio_pairs
11
+
12
+
13
+ class UnitAudioLoader(torch.utils.data.Dataset):
14
+ '''
15
+ 1) loads audio and speech units
16
+ 2) compute spectrograms
17
+ '''
18
+
19
+ def __init__(self, unit_audio_pairs, hparams, train=True):
20
+ self.unit_audio_pairs = load_unit_audio_pairs(unit_audio_pairs)
21
+ self.max_wav_value = hparams.max_wav_value
22
+ self.sampling_rate = hparams.sampling_rate
23
+ self.filter_length = hparams.filter_length
24
+ self.hop_length = hparams.hop_length
25
+ self.win_length = hparams.win_length
26
+ self.sampling_rate = hparams.sampling_rate
27
+ random.seed(1234)
28
+ random.shuffle(self.unit_audio_pairs)
29
+ self._filter()
30
+
31
+ def _filter(self):
32
+ lengths = []
33
+ for audio_path, _ in self.unit_audio_pairs:
34
+ lengths.append(os.path.getsize(audio_path) // (2 * self.hop_length))
35
+ self.lengths = lengths
36
+
37
+ def get_unit_audio_pair(self, unit_audio_pairs):
38
+ audio_path, unit_path = unit_audio_pairs[0], unit_audio_pairs[1]
39
+ unit = np.load(unit_path)
40
+ unit = torch.FloatTensor(unit)
41
+ # unit = torch.LongTensor(unit)
42
+ spec, wav = self.get_audio(audio_path)
43
+ return (unit, spec, wav)
44
+
45
+ def get_audio(self, filename):
46
+ audio, sampling_rate = load_wav_to_torch(filename)
47
+ if sampling_rate != self.sampling_rate:
48
+ raise ValueError("{} {} SR doesn't match target {} SR".format(
49
+ sampling_rate, self.sampling_rate))
50
+ audio_norm = audio / self.max_wav_value
51
+ audio_norm = audio_norm.unsqueeze(0)
52
+ spec_filename = filename.replace(".wav", ".spec.pt")
53
+ if os.path.exists(spec_filename):
54
+ spec = torch.load(spec_filename)
55
+ else:
56
+ spec = spectrogram_torch(audio_norm, self.filter_length,
57
+ self.sampling_rate, self.hop_length, self.win_length,
58
+ center=False)
59
+ spec = torch.squeeze(spec, 0)
60
+ torch.save(spec, spec_filename)
61
+ return spec, audio_norm
62
+
63
+ def __getitem__(self, index):
64
+ return self.get_unit_audio_pair(self.unit_audio_pairs[index])
65
+
66
+ def __len__(self):
67
+ return len(self.unit_audio_pairs)
68
+
69
+
70
+ class UnitAudioCollate():
71
+ def __init__(self, return_ids=False):
72
+ self.return_ids = return_ids
73
+
74
+ def __call__(self, batch):
75
+ """Collate's training batch from normalized text and aduio
76
+ PARAMS
77
+ ------
78
+ batch: [unit, spec_normalized, wav_normalized]
79
+ """
80
+ # Right zero-pad all one-hot text sequences to max input length
81
+ _, ids_sorted_decreasing = torch.sort(
82
+ torch.LongTensor([x[1].size(1) for x in batch]),
83
+ dim=0, descending=True)
84
+
85
+ max_unit_len = max([len(x[0]) for x in batch])
86
+ max_spec_len = max([x[1].size(1) for x in batch])
87
+ max_wav_len = max([x[2].size(1) for x in batch])
88
+
89
+ unit_lengths = torch.LongTensor(len(batch))
90
+ spec_lengths = torch.LongTensor(len(batch))
91
+ wav_lengths = torch.LongTensor(len(batch))
92
+
93
+ unit_padded = torch.FloatTensor(len(batch), max_unit_len, 256)
94
+ spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
95
+ wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
96
+ unit_padded.zero_()
97
+ spec_padded.zero_()
98
+ wav_padded.zero_()
99
+ for i in range(len(ids_sorted_decreasing)):
100
+ row = batch[ids_sorted_decreasing[i]]
101
+
102
+ unit = row[0]
103
+ unit_padded[i, :unit.size(0)] = unit
104
+ unit_lengths[i] = unit.size(0)
105
+
106
+ spec = row[1]
107
+ spec_padded[i, :, :spec.size(1)] = spec
108
+ spec_lengths[i] = spec.size(1)
109
+
110
+ wav = row[2]
111
+ wav_padded[i, :, :wav.size(1)] = wav
112
+ wav_lengths[i] = wav.size(1)
113
+
114
+ if self.return_ids:
115
+ return unit_padded, unit_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, ids_sorted_decreasing
116
+ return unit_padded, unit_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths
117
+
118
+ """Multi speaker version"""
119
+ class UnitAudioSpeakerLoader(torch.utils.data.Dataset):
120
+ """
121
+ 1) loads audio, speaker_id, speech unit pairs
122
+ 2) computes spectrograms from audio files.
123
+ """
124
+ def __init__(self, unit_sid_audio_pairs, hparams):
125
+ self.unit_sid_audio_pairs = load_unit_audio_pairs(unit_sid_audio_pairs)
126
+ self.max_wav_value = hparams.max_wav_value
127
+ self.sampling_rate = hparams.sampling_rate
128
+ self.filter_length = hparams.filter_length
129
+ self.hop_length = hparams.hop_length
130
+ self.win_length = hparams.win_length
131
+ self.sampling_rate = hparams.sampling_rate
132
+
133
+ random.seed(1234)
134
+ random.shuffle(self.unit_sid_audio_pairs)
135
+ self._filter()
136
+
137
+ def _filter(self):
138
+ lengths = []
139
+ for audio_path, _, _ in self.unit_sid_audio_pairs:
140
+ lengths.append(os.path.getsize(audio_path) // (2 * self.hop_length))
141
+ self.lengths = lengths
142
+
143
+ def get_unit_sid_audio_pair(self, unit_sid_audio_pair):
144
+ # separate filename, speaker_id and text
145
+ audio_path, sid, unit_path = unit_sid_audio_pair[0], unit_sid_audio_pair[1], unit_sid_audio_pair[2]
146
+ unit = np.load(unit_path)
147
+ unit = torch.FloatTensor(unit)
148
+ # unit = torch.LongTensor(unit)
149
+ spec, wav = self.get_audio(audio_path)
150
+ sid = self.get_sid(sid)
151
+ return (unit, spec, wav, sid)
152
+
153
+ def get_audio(self, filename):
154
+ audio, sampling_rate = load_wav_to_torch(filename)
155
+ if sampling_rate != self.sampling_rate:
156
+ raise ValueError("{} SR doesn't match target {} SR".format(
157
+ sampling_rate, self.sampling_rate))
158
+ audio_norm = audio / self.max_wav_value
159
+ audio_norm = audio_norm.unsqueeze(0)
160
+ spec_filename = filename.replace(".wav", ".spec.pt")
161
+ if os.path.exists(spec_filename):
162
+ spec = torch.load(spec_filename)
163
+ else:
164
+ spec = spectrogram_torch(audio_norm, self.filter_length,
165
+ self.sampling_rate, self.hop_length, self.win_length,
166
+ center=False)
167
+ spec = torch.squeeze(spec, 0)
168
+ torch.save(spec, spec_filename)
169
+ return spec, audio_norm
170
+
171
+ def get_sid(self, sid):
172
+ sid = torch.LongTensor([int(sid)])
173
+ return sid
174
+
175
+ def __getitem__(self, index):
176
+ return self.get_unit_sid_audio_pair(self.unit_sid_audio_pairs[index])
177
+
178
+ def __len__(self):
179
+ return len(self.unit_sid_audio_pairs)
180
+
181
+ class UnitAudioSpeakerCollate():
182
+ """ Zero-pads model inputs and targets
183
+ """
184
+ def __init__(self, return_ids=False):
185
+ self.return_ids = return_ids
186
+
187
+ def __call__(self, batch):
188
+ """Collate's training batch from normalized text, audio and speaker identities
189
+ PARAMS
190
+ ------
191
+ batch: [unit, spec_normalized, wav_normalized, sid]
192
+ """
193
+ # Right zero-pad all one-hot text sequences to max input length
194
+ _, ids_sorted_decreasing = torch.sort(
195
+ torch.LongTensor([x[1].size(1) for x in batch]),
196
+ dim=0, descending=True)
197
+
198
+ max_unit_len = max([len(x[0]) for x in batch])
199
+ max_spec_len = max([x[1].size(1) for x in batch])
200
+ max_wav_len = max([x[2].size(1) for x in batch])
201
+
202
+ unit_lengths = torch.LongTensor(len(batch))
203
+ spec_lengths = torch.LongTensor(len(batch))
204
+ wav_lengths = torch.LongTensor(len(batch))
205
+ sid = torch.LongTensor(len(batch))
206
+
207
+ unit_padded = torch.FloatTensor(len(batch), max_unit_len, 256)
208
+ spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
209
+ wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
210
+ unit_padded.zero_()
211
+ spec_padded.zero_()
212
+ wav_padded.zero_()
213
+ for i in range(len(ids_sorted_decreasing)):
214
+ row = batch[ids_sorted_decreasing[i]]
215
+
216
+ unit = row[0]
217
+ unit_padded[i, :unit.size(0)] = unit
218
+ unit_lengths[i] = unit.size(0)
219
+
220
+ spec = row[1]
221
+ spec_padded[i, :, :spec.size(1)] = spec
222
+ spec_lengths[i] = spec.size(1)
223
+
224
+ wav = row[2]
225
+ wav_padded[i, :, :wav.size(1)] = wav
226
+ wav_lengths[i] = wav.size(1)
227
+
228
+ sid[i] = row[3]
229
+
230
+ if self.return_ids:
231
+ return unit_padded, unit_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid, ids_sorted_decreasing
232
+ return unit_padded, unit_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid
233
+
234
+ class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
235
+ """
236
+ Maintain similar input lengths in a batch.
237
+ Length groups are specified by boundaries.
238
+ Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
239
+
240
+ It removes samples which are not included in the boundaries.
241
+ Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
242
+ """
243
+
244
+ def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
245
+ super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
246
+ self.lengths = dataset.lengths
247
+ self.batch_size = batch_size
248
+ self.boundaries = boundaries
249
+
250
+ self.buckets, self.num_samples_per_bucket = self._create_buckets()
251
+ self.total_size = sum(self.num_samples_per_bucket)
252
+ self.num_samples = self.total_size // self.num_replicas
253
+
254
+ def _create_buckets(self):
255
+ buckets = [[] for _ in range(len(self.boundaries) - 1)]
256
+ for i in range(len(self.lengths)):
257
+ length = self.lengths[i]
258
+ idx_bucket = self._bisect(length)
259
+ if idx_bucket != -1:
260
+ buckets[idx_bucket].append(i)
261
+
262
+ for i in range(len(buckets) - 1, 0, -1):
263
+ if len(buckets[i]) == 0:
264
+ buckets.pop(i)
265
+ self.boundaries.pop(i + 1)
266
+
267
+ num_samples_per_bucket = []
268
+ for i in range(len(buckets)):
269
+ len_bucket = len(buckets[i])
270
+ total_batch_size = self.num_replicas * self.batch_size
271
+ rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size
272
+ num_samples_per_bucket.append(len_bucket + rem)
273
+ return buckets, num_samples_per_bucket
274
+
275
+ def __iter__(self):
276
+ # deterministically shuffle based on epoch
277
+ g = torch.Generator()
278
+ g.manual_seed(self.epoch)
279
+
280
+ indices = []
281
+ if self.shuffle:
282
+ for bucket in self.buckets:
283
+ indices.append(torch.randperm(len(bucket), generator=g).tolist())
284
+ else:
285
+ for bucket in self.buckets:
286
+ indices.append(list(range(len(bucket))))
287
+
288
+ batches = []
289
+ for i in range(len(self.buckets)):
290
+ bucket = self.buckets[i]
291
+ len_bucket = len(bucket)
292
+ ids_bucket = indices[i]
293
+ num_samples_bucket = self.num_samples_per_bucket[i]
294
+
295
+ # add extra samples to make it evenly divisible
296
+ rem = num_samples_bucket - len_bucket
297
+ ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
298
+
299
+ # subsample
300
+ ids_bucket = ids_bucket[self.rank::self.num_replicas]
301
+
302
+ # batching
303
+ for j in range(len(ids_bucket) // self.batch_size):
304
+ batch = [bucket[idx] for idx in ids_bucket[j * self.batch_size:(j + 1) * self.batch_size]]
305
+ batches.append(batch)
306
+
307
+ if self.shuffle:
308
+ batch_ids = torch.randperm(len(batches), generator=g).tolist()
309
+ batches = [batches[i] for i in batch_ids]
310
+ self.batches = batches
311
+
312
+ assert len(self.batches) * self.batch_size == self.num_samples
313
+ return iter(self.batches)
314
+
315
+ def _bisect(self, x, lo=0, hi=None):
316
+ if hi is None:
317
+ hi = len(self.boundaries) - 1
318
+
319
+ if hi > lo:
320
+ mid = (hi + lo) // 2
321
+ if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
322
+ return mid
323
+ elif x <= self.boundaries[mid]:
324
+ return self._bisect(x, lo, mid)
325
+ else:
326
+ return self._bisect(x, mid + 1, hi)
327
+ else:
328
+ return -1
329
+
330
+ def __len__(self):
331
+ return self.num_samples // self.batch_size
logs/ow2/G_195000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5f15d1ee1b7bef05d782814fa1ddbb2b9696464ce68c2f12a29224068faec49
3
+ size 663165429
logs/ow2/config.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 200,
4
+ "eval_interval": 5000,
5
+ "seed": 1234,
6
+ "epochs": 10000,
7
+ "learning_rate": 2e-4,
8
+ "betas": [0.8, 0.99],
9
+ "eps": 1e-9,
10
+ "batch_size": 10,
11
+ "fp16_run": true,
12
+ "lr_decay": 0.999875,
13
+ "segment_size": 8192,
14
+ "init_lr_ratio": 1,
15
+ "warmup_epochs": 0,
16
+ "c_mel": 45,
17
+ "c_kl": 1.0
18
+ },
19
+ "data": {
20
+ "training_files":"filelists/train_ow2_filelist_idx.txt",
21
+ "validation_files":"filelists/val_ow2_filelist_idx.txt",
22
+ "max_wav_value": 32768.0,
23
+ "sampling_rate": 22050,
24
+ "filter_length": 1024,
25
+ "hop_length": 256,
26
+ "win_length": 1024,
27
+ "n_mel_channels": 80,
28
+ "mel_fmin": 0.0,
29
+ "mel_fmax": null,
30
+ "add_blank": true,
31
+ "n_speakers": 33
32
+ },
33
+ "model": {
34
+ "inter_channels": 192,
35
+ "hidden_channels": 256,
36
+ "filter_channels": 768,
37
+ "n_heads": 2,
38
+ "n_layers": 6,
39
+ "kernel_size": 3,
40
+ "p_dropout": 0.1,
41
+ "resblock": "1",
42
+ "resblock_kernel_sizes": [3,7,11],
43
+ "resblock_dilation_sizes": [[1,3,5], [1,3,5], [1,3,5]],
44
+ "upsample_rates": [8,8,2,2],
45
+ "upsample_initial_channel": 512,
46
+ "upsample_kernel_sizes": [16,16,4,4],
47
+ "n_layers_q": 3,
48
+ "use_spectral_norm": false,
49
+ "gin_channels": 256
50
+ }
51
+ }
mel_processing.py ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import os
3
+ import random
4
+ import torch
5
+ from torch import nn
6
+ import torch.nn.functional as F
7
+ import torch.utils.data
8
+ import torchaudio
9
+ import numpy as np
10
+ import librosa
11
+ import librosa.util as librosa_util
12
+ from librosa.util import normalize, pad_center, tiny
13
+ from scipy.signal import get_window
14
+ from scipy.io.wavfile import read
15
+ from librosa.filters import mel as librosa_mel_fn
16
+
17
+ MAX_WAV_VALUE = 32768.0
18
+
19
+ to_mel = torchaudio.transforms.MelSpectrogram(
20
+ n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
21
+
22
+ mean, std = -4, 4
23
+
24
+ def preprocess(wave):
25
+ wave_tensor = wave.float()
26
+ mel_tensor = to_mel(wave_tensor)
27
+ mel_tensor = (torch.log(1e-5 + mel_tensor) - mean) / std
28
+ return mel_tensor
29
+
30
+ def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
31
+ """
32
+ PARAMS
33
+ ------
34
+ C: compression factor
35
+ """
36
+ return torch.log(torch.clamp(x, min=clip_val) * C)
37
+
38
+
39
+ def dynamic_range_decompression_torch(x, C=1):
40
+ """
41
+ PARAMS
42
+ ------
43
+ C: compression factor used to compress
44
+ """
45
+ return torch.exp(x) / C
46
+
47
+
48
+ def spectral_normalize_torch(magnitudes):
49
+ output = dynamic_range_compression_torch(magnitudes)
50
+ return output
51
+
52
+
53
+ def spectral_de_normalize_torch(magnitudes):
54
+ output = dynamic_range_decompression_torch(magnitudes)
55
+ return output
56
+
57
+
58
+ mel_basis = {}
59
+ hann_window = {}
60
+
61
+
62
+ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
63
+ if torch.min(y) < -1.:
64
+ print('min value is ', torch.min(y))
65
+ if torch.max(y) > 1.:
66
+ print('max value is ', torch.max(y))
67
+
68
+ global hann_window
69
+ dtype_device = str(y.dtype) + '_' + str(y.device)
70
+ wnsize_dtype_device = str(win_size) + '_' + dtype_device
71
+ if wnsize_dtype_device not in hann_window:
72
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
73
+
74
+ y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
75
+ y = y.squeeze(1)
76
+
77
+ spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
78
+ center=center, pad_mode='reflect', normalized=False, onesided=True)
79
+
80
+ spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
81
+ return spec
82
+
83
+
84
+ def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
85
+ global mel_basis
86
+ dtype_device = str(spec.dtype) + '_' + str(spec.device)
87
+ fmax_dtype_device = str(fmax) + '_' + dtype_device
88
+ if fmax_dtype_device not in mel_basis:
89
+ mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
90
+ mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
91
+ spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
92
+ spec = spectral_normalize_torch(spec)
93
+ return spec
94
+
95
+
96
+ def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
97
+ if torch.min(y) < -1.:
98
+ print('min value is ', torch.min(y))
99
+ if torch.max(y) > 1.:
100
+ print('max value is ', torch.max(y))
101
+
102
+ global mel_basis, hann_window
103
+ dtype_device = str(y.dtype) + '_' + str(y.device)
104
+ fmax_dtype_device = str(fmax) + '_' + dtype_device
105
+ wnsize_dtype_device = str(win_size) + '_' + dtype_device
106
+ if fmax_dtype_device not in mel_basis:
107
+ mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
108
+ mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
109
+ if wnsize_dtype_device not in hann_window:
110
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
111
+
112
+ y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
113
+ y = y.squeeze(1)
114
+
115
+ spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
116
+ center=center, pad_mode='reflect', normalized=False, onesided=True)
117
+
118
+ spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
119
+
120
+ spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
121
+ spec = spectral_normalize_torch(spec)
122
+
123
+ return spec
models.py ADDED
@@ -0,0 +1,571 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+ import commons
8
+ import modules
9
+ import attentions
10
+ import monotonic_align
11
+
12
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
13
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
14
+ from commons import init_weights, get_padding
15
+
16
+
17
+ class StochasticDurationPredictor(nn.Module):
18
+ def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0, use_F0_model=False):
19
+ super().__init__()
20
+ filter_channels = in_channels # it needs to be removed from future version.
21
+ self.in_channels = in_channels
22
+ self.filter_channels = filter_channels
23
+ self.kernel_size = kernel_size
24
+ self.p_dropout = p_dropout
25
+ self.n_flows = n_flows
26
+ self.gin_channels = gin_channels
27
+ self.use_F0_model = use_F0_model
28
+
29
+ self.log_flow = modules.Log()
30
+ self.flows = nn.ModuleList()
31
+ self.flows.append(modules.ElementwiseAffine(2))
32
+ for i in range(n_flows):
33
+ self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
34
+ self.flows.append(modules.Flip())
35
+
36
+ self.post_pre = nn.Conv1d(1, filter_channels, 1)
37
+ self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
38
+ self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
39
+ self.post_flows = nn.ModuleList()
40
+ self.post_flows.append(modules.ElementwiseAffine(2))
41
+ for i in range(4):
42
+ self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3))
43
+ self.post_flows.append(modules.Flip())
44
+
45
+ self.pre = nn.Conv1d(in_channels, filter_channels, 1)
46
+ self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
47
+ self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
48
+ if gin_channels != 0:
49
+ self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
50
+
51
+ # F0 conv layer
52
+ if use_F0_model:
53
+ self.F0_conv = nn.Sequential(
54
+ modules.ResBlock3(256, int(256 / 2), normalize=True, downsample="half"),
55
+ )
56
+
57
+ def forward(self, x, x_mask, w=None, g=None, F0=None, reverse=False, noise_scale=1.0):
58
+ x = torch.detach(x)
59
+ x = self.pre(x)
60
+ if g is not None:
61
+ g = torch.detach(g)
62
+ x = x + self.cond(g)
63
+
64
+ if F0 is not None:
65
+ F0 = torch.detach(F0)
66
+ F0 = self.F0_conv(F0) # F0_conv [b, 128, 5, t]
67
+ F0_1, F0_2, F0_3, F0_4, F0_5 = F0.split([1, 1, 1, 1, 1], dim=2)
68
+ F0 = torch.cat([F0_1, F0_2, F0_3, F0_4, F0_5], dim=1).squeeze(2) # F0 [b, 640, t]
69
+ F0 = F.adaptive_avg_pool2d(F0, [x.shape[-2], x.shape[-1]])
70
+ x = x + F0
71
+
72
+ x = self.convs(x, x_mask)
73
+ x = self.proj(x) * x_mask
74
+
75
+ if not reverse:
76
+ flows = self.flows
77
+ assert w is not None
78
+
79
+ logdet_tot_q = 0
80
+ h_w = self.post_pre(w)
81
+ h_w = self.post_convs(h_w, x_mask)
82
+ h_w = self.post_proj(h_w) * x_mask
83
+ e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
84
+ z_q = e_q
85
+ for flow in self.post_flows:
86
+ z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
87
+ logdet_tot_q += logdet_q
88
+ z_u, z1 = torch.split(z_q, [1, 1], 1)
89
+ u = torch.sigmoid(z_u) * x_mask
90
+ z0 = (w - u) * x_mask
91
+ logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1,2])
92
+ logq = torch.sum(-0.5 * (math.log(2*math.pi) + (e_q**2)) * x_mask, [1,2]) - logdet_tot_q
93
+
94
+ logdet_tot = 0
95
+ z0, logdet = self.log_flow(z0, x_mask)
96
+ logdet_tot += logdet
97
+ z = torch.cat([z0, z1], 1)
98
+ for flow in flows:
99
+ z, logdet = flow(z, x_mask, g=x, reverse=reverse)
100
+ logdet_tot = logdet_tot + logdet
101
+ nll = torch.sum(0.5 * (math.log(2*math.pi) + (z**2)) * x_mask, [1,2]) - logdet_tot
102
+ return nll + logq # [b]
103
+ else:
104
+ flows = list(reversed(self.flows))
105
+ flows = flows[:-2] + [flows[-1]] # remove a useless vflow
106
+ z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
107
+ for flow in flows:
108
+ z = flow(z, x_mask, g=x, reverse=reverse)
109
+ z0, z1 = torch.split(z, [1, 1], 1)
110
+ logw = z0
111
+ return logw
112
+
113
+
114
+ class DurationPredictor(nn.Module):
115
+ def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0, use_F0_model=False):
116
+ super().__init__()
117
+
118
+ self.in_channels = in_channels
119
+ self.filter_channels = filter_channels
120
+ self.kernel_size = kernel_size
121
+ self.p_dropout = p_dropout
122
+ self.gin_channels = gin_channels
123
+ self.use_F0_model = use_F0_model
124
+
125
+ self.drop = nn.Dropout(p_dropout)
126
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size//2)
127
+ self.norm_1 = modules.LayerNorm(filter_channels)
128
+ self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2)
129
+ self.norm_2 = modules.LayerNorm(filter_channels)
130
+ self.proj = nn.Conv1d(filter_channels, 1, 1)
131
+
132
+ if gin_channels != 0:
133
+ self.cond = nn.Conv1d(gin_channels, in_channels, 1)
134
+
135
+ # F0 conv layer
136
+ if use_F0_model:
137
+ self.F0_conv = nn.Sequential(
138
+ modules.ResBlock3(256, int(256 / 2), normalize=True, downsample="half"),
139
+ )
140
+
141
+ def forward(self, x, x_mask, g=None, F0=None):
142
+ x = torch.detach(x)
143
+ if g is not None:
144
+ g = torch.detach(g)
145
+ x = x + self.cond(g)
146
+
147
+ if F0 is not None:
148
+ F0 = torch.detach(F0)
149
+ F0 = self.F0_conv(F0) # F0_conv [b, 128, 5, t]
150
+ F0_1, F0_2, F0_3, F0_4, F0_5 = F0.split([1, 1, 1, 1, 1], dim=2)
151
+ F0 = torch.cat([F0_1, F0_2, F0_3, F0_4, F0_5], dim=1).squeeze(2) # F0 [b, 640, t]
152
+ F0 = F.adaptive_avg_pool2d(F0, [x.shape[-2], x.shape[-1]])
153
+ x = x + F0
154
+
155
+ x = self.conv_1(x * x_mask)
156
+ x = torch.relu(x)
157
+ x = self.norm_1(x)
158
+ x = self.drop(x)
159
+ x = self.conv_2(x * x_mask)
160
+ x = torch.relu(x)
161
+ x = self.norm_2(x)
162
+ x = self.drop(x)
163
+ x = self.proj(x * x_mask)
164
+ return x * x_mask
165
+
166
+ class ContentEncoder(nn.Module):
167
+ def __init__(self,
168
+ out_channels,
169
+ hidden_channels,
170
+ filter_channels,
171
+ n_heads,
172
+ n_layers,
173
+ kernel_size,
174
+ p_dropout):
175
+ super().__init__()
176
+ self.out_channels = out_channels
177
+ self.hidden_channels = hidden_channels
178
+ self.filter_channels = filter_channels
179
+ self.n_heads = n_heads
180
+ self.n_layers = n_layers
181
+ self.kernel_size = kernel_size
182
+ self.p_dropout = p_dropout
183
+
184
+ self.encoder = attentions.Encoder(
185
+ hidden_channels,
186
+ filter_channels,
187
+ n_heads,
188
+ n_layers,
189
+ kernel_size,
190
+ p_dropout)
191
+ self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1)
192
+
193
+ def forward(self, x, x_lengths):
194
+ x = torch.transpose(x, 1, -1) # [b, h, t]
195
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
196
+
197
+ x = self.encoder(x * x_mask, x_mask)
198
+ stats = self.proj(x) * x_mask
199
+
200
+ m, logs = torch.split(stats, self.out_channels, dim=1)
201
+ return x, m, logs, x_mask
202
+
203
+ class ResidualCouplingBlock(nn.Module):
204
+ def __init__(self,
205
+ channels,
206
+ hidden_channels,
207
+ kernel_size,
208
+ dilation_rate,
209
+ n_layers,
210
+ n_flows=4,
211
+ gin_channels=0):
212
+ super().__init__()
213
+ self.channels = channels
214
+ self.hidden_channels = hidden_channels
215
+ self.kernel_size = kernel_size
216
+ self.dilation_rate = dilation_rate
217
+ self.n_layers = n_layers
218
+ self.n_flows = n_flows
219
+ self.gin_channels = gin_channels
220
+
221
+ self.flows = nn.ModuleList()
222
+ for i in range(n_flows):
223
+ self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
224
+ self.flows.append(modules.Flip())
225
+
226
+ def forward(self, x, x_mask, g=None, reverse=False):
227
+ if not reverse:
228
+ for flow in self.flows:
229
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
230
+ else:
231
+ for flow in reversed(self.flows):
232
+ x = flow(x, x_mask, g=g, reverse=reverse)
233
+ return x
234
+
235
+
236
+ class PosteriorEncoder(nn.Module):
237
+ def __init__(self,
238
+ in_channels,
239
+ out_channels,
240
+ hidden_channels,
241
+ kernel_size,
242
+ dilation_rate,
243
+ n_layers,
244
+ gin_channels=0):
245
+ super().__init__()
246
+ self.in_channels = in_channels
247
+ self.out_channels = out_channels
248
+ self.hidden_channels = hidden_channels
249
+ self.kernel_size = kernel_size
250
+ self.dilation_rate = dilation_rate
251
+ self.n_layers = n_layers
252
+ self.gin_channels = gin_channels
253
+
254
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
255
+ self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
256
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
257
+
258
+ def forward(self, x, x_lengths, g=None):
259
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
260
+ x = self.pre(x) * x_mask
261
+ x = self.enc(x, x_mask, g=g)
262
+ stats = self.proj(x) * x_mask
263
+ m, logs = torch.split(stats, self.out_channels, dim=1)
264
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
265
+ return z, m, logs, x_mask
266
+
267
+
268
+ class Generator(torch.nn.Module):
269
+ def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0, use_F0_model=False):
270
+ super(Generator, self).__init__()
271
+ self.num_kernels = len(resblock_kernel_sizes)
272
+ self.num_upsamples = len(upsample_rates)
273
+ self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
274
+ resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2
275
+
276
+ self.ups = nn.ModuleList()
277
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
278
+ self.ups.append(weight_norm(
279
+ ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
280
+ k, u, padding=(k-u)//2)))
281
+
282
+ self.resblocks = nn.ModuleList()
283
+ for i in range(len(self.ups)):
284
+ ch = upsample_initial_channel//(2**(i+1))
285
+ for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
286
+ self.resblocks.append(resblock(ch, k, d))
287
+
288
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
289
+ self.ups.apply(init_weights)
290
+
291
+ if gin_channels != 0:
292
+ self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
293
+
294
+ # F0 conv layer
295
+ if use_F0_model:
296
+ self.F0_conv = nn.Sequential(
297
+ modules.ResBlock3(256, int(256 / 2), normalize=True, downsample="half"),
298
+ )
299
+
300
+ def forward(self, x, g=None, F0=None):
301
+ x = self.conv_pre(x)
302
+ if g is not None:
303
+ x = x + self.cond(g) # g [b, 256, 1] => cond(g) [b, 512, 1]
304
+
305
+ if F0 is not None:
306
+ F0 = self.F0_conv(F0) # F0_conv [b, 128, 5, t]
307
+ F0_1, F0_2, F0_3, F0_4, F0_5 = F0.split([1, 1, 1, 1, 1], dim=2)
308
+ F0 = torch.cat([F0_1, F0_2, F0_3, F0_4, F0_5], dim=1).squeeze(2) # F0 [b, 640, t]
309
+ F0 = F.adaptive_avg_pool2d(F0, [x.shape[-2], x.shape[-1]])
310
+ x = x + F0
311
+
312
+ for i in range(self.num_upsamples):
313
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
314
+ x = self.ups[i](x)
315
+ xs = None
316
+ for j in range(self.num_kernels):
317
+ if xs is None:
318
+ xs = self.resblocks[i*self.num_kernels+j](x)
319
+ else:
320
+ xs += self.resblocks[i*self.num_kernels+j](x)
321
+ x = xs / self.num_kernels
322
+ x = F.leaky_relu(x)
323
+ x = self.conv_post(x)
324
+ x = torch.tanh(x)
325
+
326
+ return x
327
+
328
+ def remove_weight_norm(self):
329
+ print('Removing weight norm...')
330
+ for l in self.ups:
331
+ remove_weight_norm(l)
332
+ for l in self.resblocks:
333
+ l.remove_weight_norm()
334
+
335
+
336
+ class DiscriminatorP(torch.nn.Module):
337
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
338
+ super(DiscriminatorP, self).__init__()
339
+ self.period = period
340
+ self.use_spectral_norm = use_spectral_norm
341
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
342
+ self.convs = nn.ModuleList([
343
+ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
344
+ norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
345
+ norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
346
+ norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
347
+ norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
348
+ ])
349
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
350
+
351
+ def forward(self, x):
352
+ fmap = []
353
+
354
+ # 1d to 2d
355
+ b, c, t = x.shape
356
+ if t % self.period != 0: # pad first
357
+ n_pad = self.period - (t % self.period)
358
+ x = F.pad(x, (0, n_pad), "reflect")
359
+ t = t + n_pad
360
+ x = x.view(b, c, t // self.period, self.period)
361
+
362
+ for l in self.convs:
363
+ x = l(x)
364
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
365
+ fmap.append(x)
366
+ x = self.conv_post(x)
367
+ fmap.append(x)
368
+ x = torch.flatten(x, 1, -1)
369
+
370
+ return x, fmap
371
+
372
+
373
+ class DiscriminatorS(torch.nn.Module):
374
+ def __init__(self, use_spectral_norm=False):
375
+ super(DiscriminatorS, self).__init__()
376
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
377
+ self.convs = nn.ModuleList([
378
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
379
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
380
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
381
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
382
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
383
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
384
+ ])
385
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
386
+
387
+ def forward(self, x):
388
+ fmap = []
389
+
390
+ for l in self.convs:
391
+ x = l(x)
392
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
393
+ fmap.append(x)
394
+ x = self.conv_post(x)
395
+ fmap.append(x)
396
+ x = torch.flatten(x, 1, -1)
397
+
398
+ return x, fmap
399
+
400
+
401
+ class MultiPeriodDiscriminator(torch.nn.Module):
402
+ def __init__(self, use_spectral_norm=False):
403
+ super(MultiPeriodDiscriminator, self).__init__()
404
+ periods = [2,3,5,7,11]
405
+
406
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
407
+ discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
408
+ self.discriminators = nn.ModuleList(discs)
409
+
410
+ def forward(self, y, y_hat):
411
+ y_d_rs = []
412
+ y_d_gs = []
413
+ fmap_rs = []
414
+ fmap_gs = []
415
+ for i, d in enumerate(self.discriminators):
416
+ y_d_r, fmap_r = d(y)
417
+ y_d_g, fmap_g = d(y_hat)
418
+ y_d_rs.append(y_d_r)
419
+ y_d_gs.append(y_d_g)
420
+ fmap_rs.append(fmap_r)
421
+ fmap_gs.append(fmap_g)
422
+
423
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
424
+
425
+
426
+
427
+ class SynthesizerTrn(nn.Module):
428
+ """
429
+ Synthesizer for Training
430
+ """
431
+
432
+ def __init__(self,
433
+ spec_channels,
434
+ segment_size,
435
+ inter_channels,
436
+ hidden_channels,
437
+ filter_channels,
438
+ n_heads,
439
+ n_layers,
440
+ kernel_size,
441
+ p_dropout,
442
+ resblock,
443
+ resblock_kernel_sizes,
444
+ resblock_dilation_sizes,
445
+ upsample_rates,
446
+ upsample_initial_channel,
447
+ upsample_kernel_sizes,
448
+ n_speakers=0,
449
+ gin_channels=0,
450
+ use_F0_model=False,
451
+ use_sdp=True,
452
+ **kwargs):
453
+
454
+ super().__init__()
455
+ self.spec_channels = spec_channels
456
+ self.inter_channels = inter_channels
457
+ self.hidden_channels = hidden_channels
458
+ self.filter_channels = filter_channels
459
+ self.n_heads = n_heads
460
+ self.n_layers = n_layers
461
+ self.kernel_size = kernel_size
462
+ self.p_dropout = p_dropout
463
+ self.resblock = resblock
464
+ self.resblock_kernel_sizes = resblock_kernel_sizes
465
+ self.resblock_dilation_sizes = resblock_dilation_sizes
466
+ self.upsample_rates = upsample_rates
467
+ self.upsample_initial_channel = upsample_initial_channel
468
+ self.upsample_kernel_sizes = upsample_kernel_sizes
469
+ self.segment_size = segment_size
470
+ self.n_speakers = n_speakers
471
+ self.gin_channels = gin_channels
472
+ self.use_F0_model = use_F0_model
473
+
474
+ self.use_sdp = use_sdp
475
+
476
+ self.enc_p = ContentEncoder(
477
+ inter_channels,
478
+ hidden_channels,
479
+ filter_channels,
480
+ n_heads,
481
+ n_layers,
482
+ kernel_size,
483
+ p_dropout)
484
+ self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels, use_F0_model=use_F0_model)
485
+ self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
486
+ self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
487
+
488
+ if use_sdp:
489
+ self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels, use_F0_model=use_F0_model)
490
+ else:
491
+ self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels, use_F0_model=use_F0_model)
492
+
493
+ if n_speakers > 1:
494
+ self.emb_g = nn.Embedding(n_speakers, gin_channels)
495
+
496
+ def forward(self, x, x_lengths, y, y_lengths, sid=None, F0=None):
497
+
498
+ x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
499
+ if self.n_speakers > 0:
500
+ g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
501
+ else:
502
+ g = None
503
+
504
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
505
+ z_p = self.flow(z, y_mask, g=g)
506
+
507
+ with torch.no_grad():
508
+ # negative cross-entropy
509
+ s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
510
+ neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True) # [b, 1, t_s]
511
+ neg_cent2 = torch.matmul(-0.5 * (z_p ** 2).transpose(1, 2), s_p_sq_r) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
512
+ neg_cent3 = torch.matmul(z_p.transpose(1, 2), (m_p * s_p_sq_r)) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
513
+ neg_cent4 = torch.sum(-0.5 * (m_p ** 2) * s_p_sq_r, [1], keepdim=True) # [b, 1, t_s]
514
+ neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
515
+
516
+ attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
517
+ attn = monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
518
+
519
+ w = attn.sum(2)
520
+ if self.use_sdp:
521
+ l_length = self.dp(x, x_mask, w, g=g, F0=F0)
522
+ l_length = l_length / torch.sum(x_mask)
523
+ else:
524
+ logw_ = torch.log(w + 1e-6) * x_mask
525
+ logw = self.dp(x, x_mask, g=g, F0=F0)
526
+ l_length = torch.sum((logw - logw_)**2, [1,2]) / torch.sum(x_mask) # for averaging
527
+
528
+ # expand prior
529
+ m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
530
+ logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
531
+
532
+ z_slice, ids_slice = commons.rand_slice_segments(z, y_lengths, self.segment_size)
533
+ o = self.dec(z_slice, g=g, F0=F0)
534
+ return o, l_length, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
535
+
536
+ def infer(self, x, x_lengths, sid=None, F0=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
537
+ x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
538
+ if self.n_speakers > 0:
539
+ g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
540
+ else:
541
+ g = None
542
+
543
+ if self.use_sdp:
544
+ logw = self.dp(x, x_mask, g=g, F0=F0, reverse=True, noise_scale=noise_scale_w)
545
+ else:
546
+ logw = self.dp(x, x_mask, g=g, F0=F0)
547
+ w = torch.exp(logw) * x_mask * length_scale
548
+ w_ceil = torch.ceil(w)
549
+ y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
550
+ y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
551
+ attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
552
+ attn = commons.generate_path(w_ceil, attn_mask)
553
+
554
+ m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
555
+ logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
556
+
557
+ z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
558
+ z = self.flow(z_p, y_mask, g=g, reverse=True)
559
+ o = self.dec((z * y_mask)[:,:,:max_len], g=g, F0=F0)
560
+ return o, attn, y_mask, (z, z_p, m_p, logs_p)
561
+
562
+ def voice_conversion(self, y, y_lengths, sid_src, sid_tgt):
563
+ assert self.n_speakers > 0, "n_speakers have to be larger than 0."
564
+ g_src = self.emb_g(sid_src).unsqueeze(-1)
565
+ g_tgt = self.emb_g(sid_tgt).unsqueeze(-1)
566
+ z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src)
567
+ z_p = self.flow(z, y_mask, g=g_src)
568
+ z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
569
+ o_hat = self.dec(z_hat * y_mask, g=g_tgt)
570
+ return o_hat, y_mask, (z, z_p, z_hat)
571
+
modules.py ADDED
@@ -0,0 +1,449 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import numpy as np
4
+ import scipy
5
+ import torch
6
+ from torch import nn
7
+ from torch.nn import functional as F
8
+
9
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
10
+ from torch.nn.utils import weight_norm, remove_weight_norm
11
+
12
+ import commons
13
+ from commons import init_weights, get_padding
14
+ from transforms import piecewise_rational_quadratic_transform
15
+
16
+
17
+ LRELU_SLOPE = 0.1
18
+
19
+
20
+ class LayerNorm(nn.Module):
21
+ def __init__(self, channels, eps=1e-5):
22
+ super().__init__()
23
+ self.channels = channels
24
+ self.eps = eps
25
+
26
+ self.gamma = nn.Parameter(torch.ones(channels))
27
+ self.beta = nn.Parameter(torch.zeros(channels))
28
+
29
+ def forward(self, x):
30
+ x = x.transpose(1, -1)
31
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
32
+ return x.transpose(1, -1)
33
+
34
+
35
+ class ConvReluNorm(nn.Module):
36
+ def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
37
+ super().__init__()
38
+ self.in_channels = in_channels
39
+ self.hidden_channels = hidden_channels
40
+ self.out_channels = out_channels
41
+ self.kernel_size = kernel_size
42
+ self.n_layers = n_layers
43
+ self.p_dropout = p_dropout
44
+ assert n_layers > 1, "Number of layers should be larger than 0."
45
+
46
+ self.conv_layers = nn.ModuleList()
47
+ self.norm_layers = nn.ModuleList()
48
+ self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
49
+ self.norm_layers.append(LayerNorm(hidden_channels))
50
+ self.relu_drop = nn.Sequential(
51
+ nn.ReLU(),
52
+ nn.Dropout(p_dropout))
53
+ for _ in range(n_layers-1):
54
+ self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
55
+ self.norm_layers.append(LayerNorm(hidden_channels))
56
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
57
+ self.proj.weight.data.zero_()
58
+ self.proj.bias.data.zero_()
59
+
60
+ def forward(self, x, x_mask):
61
+ x_org = x
62
+ for i in range(self.n_layers):
63
+ x = self.conv_layers[i](x * x_mask)
64
+ x = self.norm_layers[i](x)
65
+ x = self.relu_drop(x)
66
+ x = x_org + self.proj(x)
67
+ return x * x_mask
68
+
69
+
70
+ class DDSConv(nn.Module):
71
+ """
72
+ Dialted and Depth-Separable Convolution
73
+ """
74
+ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
75
+ super().__init__()
76
+ self.channels = channels
77
+ self.kernel_size = kernel_size
78
+ self.n_layers = n_layers
79
+ self.p_dropout = p_dropout
80
+
81
+ self.drop = nn.Dropout(p_dropout)
82
+ self.convs_sep = nn.ModuleList()
83
+ self.convs_1x1 = nn.ModuleList()
84
+ self.norms_1 = nn.ModuleList()
85
+ self.norms_2 = nn.ModuleList()
86
+ for i in range(n_layers):
87
+ dilation = kernel_size ** i
88
+ padding = (kernel_size * dilation - dilation) // 2
89
+ self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
90
+ groups=channels, dilation=dilation, padding=padding
91
+ ))
92
+ self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
93
+ self.norms_1.append(LayerNorm(channels))
94
+ self.norms_2.append(LayerNorm(channels))
95
+
96
+ def forward(self, x, x_mask, g=None):
97
+ if g is not None:
98
+ x = x + g
99
+ for i in range(self.n_layers):
100
+ y = self.convs_sep[i](x * x_mask)
101
+ y = self.norms_1[i](y)
102
+ y = F.gelu(y)
103
+ y = self.convs_1x1[i](y)
104
+ y = self.norms_2[i](y)
105
+ y = F.gelu(y)
106
+ y = self.drop(y)
107
+ x = x + y
108
+ return x * x_mask
109
+
110
+
111
+ class WN(torch.nn.Module):
112
+ def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
113
+ super(WN, self).__init__()
114
+ assert(kernel_size % 2 == 1)
115
+ self.hidden_channels =hidden_channels
116
+ self.kernel_size = kernel_size,
117
+ self.dilation_rate = dilation_rate
118
+ self.n_layers = n_layers
119
+ self.gin_channels = gin_channels
120
+ self.p_dropout = p_dropout
121
+
122
+ self.in_layers = torch.nn.ModuleList()
123
+ self.res_skip_layers = torch.nn.ModuleList()
124
+ self.drop = nn.Dropout(p_dropout)
125
+
126
+ if gin_channels != 0:
127
+ cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
128
+ self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
129
+
130
+ for i in range(n_layers):
131
+ dilation = dilation_rate ** i
132
+ padding = int((kernel_size * dilation - dilation) / 2)
133
+ in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
134
+ dilation=dilation, padding=padding)
135
+ in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
136
+ self.in_layers.append(in_layer)
137
+
138
+ # last one is not necessary
139
+ if i < n_layers - 1:
140
+ res_skip_channels = 2 * hidden_channels
141
+ else:
142
+ res_skip_channels = hidden_channels
143
+
144
+ res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
145
+ res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
146
+ self.res_skip_layers.append(res_skip_layer)
147
+
148
+ def forward(self, x, x_mask, g=None, **kwargs):
149
+ output = torch.zeros_like(x)
150
+ n_channels_tensor = torch.IntTensor([self.hidden_channels])
151
+
152
+ if g is not None:
153
+ g = self.cond_layer(g)
154
+
155
+ for i in range(self.n_layers):
156
+ x_in = self.in_layers[i](x)
157
+ if g is not None:
158
+ cond_offset = i * 2 * self.hidden_channels
159
+ g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
160
+ else:
161
+ g_l = torch.zeros_like(x_in)
162
+
163
+ acts = commons.fused_add_tanh_sigmoid_multiply(
164
+ x_in,
165
+ g_l,
166
+ n_channels_tensor)
167
+ acts = self.drop(acts)
168
+
169
+ res_skip_acts = self.res_skip_layers[i](acts)
170
+ if i < self.n_layers - 1:
171
+ res_acts = res_skip_acts[:,:self.hidden_channels,:]
172
+ x = (x + res_acts) * x_mask
173
+ output = output + res_skip_acts[:,self.hidden_channels:,:]
174
+ else:
175
+ output = output + res_skip_acts
176
+ return output * x_mask
177
+
178
+ def remove_weight_norm(self):
179
+ if self.gin_channels != 0:
180
+ torch.nn.utils.remove_weight_norm(self.cond_layer)
181
+ for l in self.in_layers:
182
+ torch.nn.utils.remove_weight_norm(l)
183
+ for l in self.res_skip_layers:
184
+ torch.nn.utils.remove_weight_norm(l)
185
+
186
+
187
+ class ResBlock1(torch.nn.Module):
188
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
189
+ super(ResBlock1, self).__init__()
190
+ self.convs1 = nn.ModuleList([
191
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
192
+ padding=get_padding(kernel_size, dilation[0]))),
193
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
194
+ padding=get_padding(kernel_size, dilation[1]))),
195
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
196
+ padding=get_padding(kernel_size, dilation[2])))
197
+ ])
198
+ self.convs1.apply(init_weights)
199
+
200
+ self.convs2 = nn.ModuleList([
201
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
202
+ padding=get_padding(kernel_size, 1))),
203
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
204
+ padding=get_padding(kernel_size, 1))),
205
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
206
+ padding=get_padding(kernel_size, 1)))
207
+ ])
208
+ self.convs2.apply(init_weights)
209
+
210
+ def forward(self, x, x_mask=None):
211
+ for c1, c2 in zip(self.convs1, self.convs2):
212
+ xt = F.leaky_relu(x, LRELU_SLOPE)
213
+ if x_mask is not None:
214
+ xt = xt * x_mask
215
+ xt = c1(xt)
216
+ xt = F.leaky_relu(xt, LRELU_SLOPE)
217
+ if x_mask is not None:
218
+ xt = xt * x_mask
219
+ xt = c2(xt)
220
+ x = xt + x
221
+ if x_mask is not None:
222
+ x = x * x_mask
223
+ return x
224
+
225
+ def remove_weight_norm(self):
226
+ for l in self.convs1:
227
+ remove_weight_norm(l)
228
+ for l in self.convs2:
229
+ remove_weight_norm(l)
230
+
231
+
232
+ class ResBlock2(torch.nn.Module):
233
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
234
+ super(ResBlock2, self).__init__()
235
+ self.convs = nn.ModuleList([
236
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
237
+ padding=get_padding(kernel_size, dilation[0]))),
238
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
239
+ padding=get_padding(kernel_size, dilation[1])))
240
+ ])
241
+ self.convs.apply(init_weights)
242
+
243
+ def forward(self, x, x_mask=None):
244
+ for c in self.convs:
245
+ xt = F.leaky_relu(x, LRELU_SLOPE)
246
+ if x_mask is not None:
247
+ xt = xt * x_mask
248
+ xt = c(xt)
249
+ x = xt + x
250
+ if x_mask is not None:
251
+ x = x * x_mask
252
+ return x
253
+
254
+ def remove_weight_norm(self):
255
+ for l in self.convs:
256
+ remove_weight_norm(l)
257
+
258
+
259
+ class Log(nn.Module):
260
+ def forward(self, x, x_mask, reverse=False, **kwargs):
261
+ if not reverse:
262
+ y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
263
+ logdet = torch.sum(-y, [1, 2])
264
+ return y, logdet
265
+ else:
266
+ x = torch.exp(x) * x_mask
267
+ return x
268
+
269
+
270
+ class Flip(nn.Module):
271
+ def forward(self, x, *args, reverse=False, **kwargs):
272
+ x = torch.flip(x, [1])
273
+ if not reverse:
274
+ logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
275
+ return x, logdet
276
+ else:
277
+ return x
278
+
279
+
280
+ class ElementwiseAffine(nn.Module):
281
+ def __init__(self, channels):
282
+ super().__init__()
283
+ self.channels = channels
284
+ self.m = nn.Parameter(torch.zeros(channels,1))
285
+ self.logs = nn.Parameter(torch.zeros(channels,1))
286
+
287
+ def forward(self, x, x_mask, reverse=False, **kwargs):
288
+ if not reverse:
289
+ y = self.m + torch.exp(self.logs) * x
290
+ y = y * x_mask
291
+ logdet = torch.sum(self.logs * x_mask, [1,2])
292
+ return y, logdet
293
+ else:
294
+ x = (x - self.m) * torch.exp(-self.logs) * x_mask
295
+ return x
296
+
297
+
298
+ class ResidualCouplingLayer(nn.Module):
299
+ def __init__(self,
300
+ channels,
301
+ hidden_channels,
302
+ kernel_size,
303
+ dilation_rate,
304
+ n_layers,
305
+ p_dropout=0,
306
+ gin_channels=0,
307
+ mean_only=False):
308
+ assert channels % 2 == 0, "channels should be divisible by 2"
309
+ super().__init__()
310
+ self.channels = channels
311
+ self.hidden_channels = hidden_channels
312
+ self.kernel_size = kernel_size
313
+ self.dilation_rate = dilation_rate
314
+ self.n_layers = n_layers
315
+ self.half_channels = channels // 2
316
+ self.mean_only = mean_only
317
+
318
+ self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
319
+ self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
320
+ self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
321
+ self.post.weight.data.zero_()
322
+ self.post.bias.data.zero_()
323
+
324
+ def forward(self, x, x_mask, g=None, reverse=False):
325
+ x0, x1 = torch.split(x, [self.half_channels]*2, 1)
326
+ h = self.pre(x0) * x_mask
327
+ h = self.enc(h, x_mask, g=g)
328
+ stats = self.post(h) * x_mask
329
+ if not self.mean_only:
330
+ m, logs = torch.split(stats, [self.half_channels]*2, 1)
331
+ else:
332
+ m = stats
333
+ logs = torch.zeros_like(m)
334
+
335
+ if not reverse:
336
+ x1 = m + x1 * torch.exp(logs) * x_mask
337
+ x = torch.cat([x0, x1], 1)
338
+ logdet = torch.sum(logs, [1,2])
339
+ return x, logdet
340
+ else:
341
+ x1 = (x1 - m) * torch.exp(-logs) * x_mask
342
+ x = torch.cat([x0, x1], 1)
343
+ return x
344
+
345
+
346
+ class ConvFlow(nn.Module):
347
+ def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
348
+ super().__init__()
349
+ self.in_channels = in_channels
350
+ self.filter_channels = filter_channels
351
+ self.kernel_size = kernel_size
352
+ self.n_layers = n_layers
353
+ self.num_bins = num_bins
354
+ self.tail_bound = tail_bound
355
+ self.half_channels = in_channels // 2
356
+
357
+ self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
358
+ self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
359
+ self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
360
+ self.proj.weight.data.zero_()
361
+ self.proj.bias.data.zero_()
362
+
363
+ def forward(self, x, x_mask, g=None, reverse=False):
364
+ x0, x1 = torch.split(x, [self.half_channels]*2, 1)
365
+ h = self.pre(x0)
366
+ h = self.convs(h, x_mask, g=g)
367
+ h = self.proj(h) * x_mask
368
+
369
+ b, c, t = x0.shape
370
+ h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
371
+
372
+ unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
373
+ unnormalized_heights = h[..., self.num_bins:2*self.num_bins] / math.sqrt(self.filter_channels)
374
+ unnormalized_derivatives = h[..., 2 * self.num_bins:]
375
+
376
+ x1, logabsdet = piecewise_rational_quadratic_transform(x1,
377
+ unnormalized_widths,
378
+ unnormalized_heights,
379
+ unnormalized_derivatives,
380
+ inverse=reverse,
381
+ tails='linear',
382
+ tail_bound=self.tail_bound
383
+ )
384
+
385
+ x = torch.cat([x0, x1], 1) * x_mask
386
+ logdet = torch.sum(logabsdet * x_mask, [1,2])
387
+ if not reverse:
388
+ return x, logdet
389
+ else:
390
+ return x
391
+
392
+ # modules from StarGANv2-VC
393
+
394
+ class DownSample(nn.Module):
395
+ def __init__(self, layer_type):
396
+ super().__init__()
397
+ self.layer_type = layer_type
398
+
399
+ def forward(self, x):
400
+ if self.layer_type == 'none':
401
+ return x
402
+ elif self.layer_type == 'timepreserve':
403
+ return F.avg_pool2d(x, (2, 1))
404
+ elif self.layer_type == 'half':
405
+ return F.avg_pool2d(x, 2)
406
+ else:
407
+ raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
408
+
409
+ class ResBlock3(nn.Module):
410
+ def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2),
411
+ normalize=False, downsample='none'):
412
+ super().__init__()
413
+ self.actv = actv
414
+ self.normalize = normalize
415
+ self.downsample = DownSample(downsample)
416
+ self.learned_sc = dim_in != dim_out
417
+ self._build_weights(dim_in, dim_out)
418
+
419
+ def _build_weights(self, dim_in, dim_out):
420
+ self.conv1 = nn.Conv2d(dim_in, dim_in, 3, 1, 1)
421
+ self.conv2 = nn.Conv2d(dim_in, dim_out, 3, 1, 1)
422
+ if self.normalize:
423
+ self.norm1 = nn.InstanceNorm2d(dim_in, affine=True)
424
+ self.norm2 = nn.InstanceNorm2d(dim_in, affine=True)
425
+ if self.learned_sc:
426
+ self.conv1x1 = nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=False)
427
+
428
+ def _shortcut(self, x):
429
+ if self.learned_sc:
430
+ x = self.conv1x1(x)
431
+ if self.downsample:
432
+ x = self.downsample(x)
433
+ return x
434
+
435
+ def _residual(self, x):
436
+ if self.normalize:
437
+ x = self.norm1(x)
438
+ x = self.actv(x)
439
+ x = self.conv1(x)
440
+ x = self.downsample(x)
441
+ if self.normalize:
442
+ x = self.norm2(x)
443
+ x = self.actv(x)
444
+ x = self.conv2(x)
445
+ return x
446
+
447
+ def forward(self, x):
448
+ x = self._shortcut(x) + self._residual(x)
449
+ return x / math.sqrt(2) # unit variance
monotonic_align/__init__.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ from .monotonic_align.core import maximum_path_c
4
+
5
+
6
+ def maximum_path(neg_cent, mask):
7
+ """ Cython optimized version.
8
+ neg_cent: [b, t_t, t_s]
9
+ mask: [b, t_t, t_s]
10
+ """
11
+ device = neg_cent.device
12
+ dtype = neg_cent.dtype
13
+ neg_cent = neg_cent.data.cpu().numpy().astype(np.float32)
14
+ path = np.zeros(neg_cent.shape, dtype=np.int32)
15
+
16
+ t_t_max = mask.sum(1)[:, 0].data.cpu().numpy().astype(np.int32)
17
+ t_s_max = mask.sum(2)[:, 0].data.cpu().numpy().astype(np.int32)
18
+ maximum_path_c(path, neg_cent, t_t_max, t_s_max)
19
+ return torch.from_numpy(path).to(device=device, dtype=dtype)
monotonic_align/core.c ADDED
The diff for this file is too large to render. See raw diff
 
monotonic_align/core.pyx ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ cimport cython
2
+ from cython.parallel import prange
3
+
4
+
5
+ @cython.boundscheck(False)
6
+ @cython.wraparound(False)
7
+ cdef void maximum_path_each(int[:,::1] path, float[:,::1] value, int t_y, int t_x, float max_neg_val=-1e9) nogil:
8
+ cdef int x
9
+ cdef int y
10
+ cdef float v_prev
11
+ cdef float v_cur
12
+ cdef float tmp
13
+ cdef int index = t_x - 1
14
+
15
+ for y in range(t_y):
16
+ for x in range(max(0, t_x + y - t_y), min(t_x, y + 1)):
17
+ if x == y:
18
+ v_cur = max_neg_val
19
+ else:
20
+ v_cur = value[y-1, x]
21
+ if x == 0:
22
+ if y == 0:
23
+ v_prev = 0.
24
+ else:
25
+ v_prev = max_neg_val
26
+ else:
27
+ v_prev = value[y-1, x-1]
28
+ value[y, x] += max(v_prev, v_cur)
29
+
30
+ for y in range(t_y - 1, -1, -1):
31
+ path[y, index] = 1
32
+ if index != 0 and (index == y or value[y-1, index] < value[y-1, index-1]):
33
+ index = index - 1
34
+
35
+
36
+ @cython.boundscheck(False)
37
+ @cython.wraparound(False)
38
+ cpdef void maximum_path_c(int[:,:,::1] paths, float[:,:,::1] values, int[::1] t_ys, int[::1] t_xs) nogil:
39
+ cdef int b = paths.shape[0]
40
+ cdef int i
41
+ for i in prange(b, nogil=True):
42
+ maximum_path_each(paths[i], values[i], t_ys[i], t_xs[i])
monotonic_align/monotonic_align/core.cpython-37m-x86_64-linux-gnu.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b7860864450a414629fce8397c335fe0825bd0b1a98089233ef826c6758d649
3
+ size 729352
monotonic_align/setup.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ from distutils.core import setup
2
+ from Cython.Build import cythonize
3
+ import numpy
4
+
5
+ setup(
6
+ name = 'monotonic_align',
7
+ ext_modules = cythonize("core.pyx"),
8
+ include_dirs=[numpy.get_include()]
9
+ )
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ Cython==0.29.21
2
+ librosa==0.8.0
3
+ matplotlib==3.3.1
4
+ numpy==1.21.6
5
+ scipy==1.5.2
6
+ tensorboard==2.3.0
transforms.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.nn import functional as F
3
+
4
+ import numpy as np
5
+
6
+
7
+ DEFAULT_MIN_BIN_WIDTH = 1e-3
8
+ DEFAULT_MIN_BIN_HEIGHT = 1e-3
9
+ DEFAULT_MIN_DERIVATIVE = 1e-3
10
+
11
+
12
+ def piecewise_rational_quadratic_transform(inputs,
13
+ unnormalized_widths,
14
+ unnormalized_heights,
15
+ unnormalized_derivatives,
16
+ inverse=False,
17
+ tails=None,
18
+ tail_bound=1.,
19
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
20
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
21
+ min_derivative=DEFAULT_MIN_DERIVATIVE):
22
+
23
+ if tails is None:
24
+ spline_fn = rational_quadratic_spline
25
+ spline_kwargs = {}
26
+ else:
27
+ spline_fn = unconstrained_rational_quadratic_spline
28
+ spline_kwargs = {
29
+ 'tails': tails,
30
+ 'tail_bound': tail_bound
31
+ }
32
+
33
+ outputs, logabsdet = spline_fn(
34
+ inputs=inputs,
35
+ unnormalized_widths=unnormalized_widths,
36
+ unnormalized_heights=unnormalized_heights,
37
+ unnormalized_derivatives=unnormalized_derivatives,
38
+ inverse=inverse,
39
+ min_bin_width=min_bin_width,
40
+ min_bin_height=min_bin_height,
41
+ min_derivative=min_derivative,
42
+ **spline_kwargs
43
+ )
44
+ return outputs, logabsdet
45
+
46
+
47
+ def searchsorted(bin_locations, inputs, eps=1e-6):
48
+ bin_locations[..., -1] += eps
49
+ return torch.sum(
50
+ inputs[..., None] >= bin_locations,
51
+ dim=-1
52
+ ) - 1
53
+
54
+
55
+ def unconstrained_rational_quadratic_spline(inputs,
56
+ unnormalized_widths,
57
+ unnormalized_heights,
58
+ unnormalized_derivatives,
59
+ inverse=False,
60
+ tails='linear',
61
+ tail_bound=1.,
62
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
63
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
64
+ min_derivative=DEFAULT_MIN_DERIVATIVE):
65
+ inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
66
+ outside_interval_mask = ~inside_interval_mask
67
+
68
+ outputs = torch.zeros_like(inputs)
69
+ logabsdet = torch.zeros_like(inputs)
70
+
71
+ if tails == 'linear':
72
+ unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
73
+ constant = np.log(np.exp(1 - min_derivative) - 1)
74
+ unnormalized_derivatives[..., 0] = constant
75
+ unnormalized_derivatives[..., -1] = constant
76
+
77
+ outputs[outside_interval_mask] = inputs[outside_interval_mask]
78
+ logabsdet[outside_interval_mask] = 0
79
+ else:
80
+ raise RuntimeError('{} tails are not implemented.'.format(tails))
81
+
82
+ outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline(
83
+ inputs=inputs[inside_interval_mask],
84
+ unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
85
+ unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
86
+ unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
87
+ inverse=inverse,
88
+ left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound,
89
+ min_bin_width=min_bin_width,
90
+ min_bin_height=min_bin_height,
91
+ min_derivative=min_derivative
92
+ )
93
+
94
+ return outputs, logabsdet
95
+
96
+ def rational_quadratic_spline(inputs,
97
+ unnormalized_widths,
98
+ unnormalized_heights,
99
+ unnormalized_derivatives,
100
+ inverse=False,
101
+ left=0., right=1., bottom=0., top=1.,
102
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
103
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
104
+ min_derivative=DEFAULT_MIN_DERIVATIVE):
105
+ if torch.min(inputs) < left or torch.max(inputs) > right:
106
+ raise ValueError('Input to a transform is not within its domain')
107
+
108
+ num_bins = unnormalized_widths.shape[-1]
109
+
110
+ if min_bin_width * num_bins > 1.0:
111
+ raise ValueError('Minimal bin width too large for the number of bins')
112
+ if min_bin_height * num_bins > 1.0:
113
+ raise ValueError('Minimal bin height too large for the number of bins')
114
+
115
+ widths = F.softmax(unnormalized_widths, dim=-1)
116
+ widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
117
+ cumwidths = torch.cumsum(widths, dim=-1)
118
+ cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
119
+ cumwidths = (right - left) * cumwidths + left
120
+ cumwidths[..., 0] = left
121
+ cumwidths[..., -1] = right
122
+ widths = cumwidths[..., 1:] - cumwidths[..., :-1]
123
+
124
+ derivatives = min_derivative + F.softplus(unnormalized_derivatives)
125
+
126
+ heights = F.softmax(unnormalized_heights, dim=-1)
127
+ heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
128
+ cumheights = torch.cumsum(heights, dim=-1)
129
+ cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
130
+ cumheights = (top - bottom) * cumheights + bottom
131
+ cumheights[..., 0] = bottom
132
+ cumheights[..., -1] = top
133
+ heights = cumheights[..., 1:] - cumheights[..., :-1]
134
+
135
+ if inverse:
136
+ bin_idx = searchsorted(cumheights, inputs)[..., None]
137
+ else:
138
+ bin_idx = searchsorted(cumwidths, inputs)[..., None]
139
+
140
+ input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
141
+ input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
142
+
143
+ input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
144
+ delta = heights / widths
145
+ input_delta = delta.gather(-1, bin_idx)[..., 0]
146
+
147
+ input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
148
+ input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
149
+
150
+ input_heights = heights.gather(-1, bin_idx)[..., 0]
151
+
152
+ if inverse:
153
+ a = (((inputs - input_cumheights) * (input_derivatives
154
+ + input_derivatives_plus_one
155
+ - 2 * input_delta)
156
+ + input_heights * (input_delta - input_derivatives)))
157
+ b = (input_heights * input_derivatives
158
+ - (inputs - input_cumheights) * (input_derivatives
159
+ + input_derivatives_plus_one
160
+ - 2 * input_delta))
161
+ c = - input_delta * (inputs - input_cumheights)
162
+
163
+ discriminant = b.pow(2) - 4 * a * c
164
+ assert (discriminant >= 0).all()
165
+
166
+ root = (2 * c) / (-b - torch.sqrt(discriminant))
167
+ outputs = root * input_bin_widths + input_cumwidths
168
+
169
+ theta_one_minus_theta = root * (1 - root)
170
+ denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
171
+ * theta_one_minus_theta)
172
+ derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2)
173
+ + 2 * input_delta * theta_one_minus_theta
174
+ + input_derivatives * (1 - root).pow(2))
175
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
176
+
177
+ return outputs, -logabsdet
178
+ else:
179
+ theta = (inputs - input_cumwidths) / input_bin_widths
180
+ theta_one_minus_theta = theta * (1 - theta)
181
+
182
+ numerator = input_heights * (input_delta * theta.pow(2)
183
+ + input_derivatives * theta_one_minus_theta)
184
+ denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
185
+ * theta_one_minus_theta)
186
+ outputs = input_cumheights + numerator / denominator
187
+
188
+ derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2)
189
+ + 2 * input_delta * theta_one_minus_theta
190
+ + input_derivatives * (1 - theta).pow(2))
191
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
192
+
193
+ return outputs, logabsdet
utils.py ADDED
@@ -0,0 +1,256 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import glob
3
+ import sys
4
+ import argparse
5
+ import logging
6
+ import json
7
+ import subprocess
8
+ import numpy as np
9
+ from scipy.io.wavfile import read
10
+ import torch
11
+
12
+ MATPLOTLIB_FLAG = False
13
+
14
+ logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
15
+ logger = logging
16
+
17
+
18
+ def load_checkpoint(checkpoint_path, model, optimizer=None):
19
+ assert os.path.isfile(checkpoint_path)
20
+ checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
21
+ iteration = checkpoint_dict['iteration']
22
+ learning_rate = checkpoint_dict['learning_rate']
23
+ if optimizer is not None:
24
+ optimizer.load_state_dict(checkpoint_dict['optimizer'])
25
+ saved_state_dict = checkpoint_dict['model']
26
+ if hasattr(model, 'module'):
27
+ state_dict = model.module.state_dict()
28
+ else:
29
+ state_dict = model.state_dict()
30
+ new_state_dict= {}
31
+ for k, v in state_dict.items():
32
+ try:
33
+ new_state_dict[k] = saved_state_dict[k]
34
+ except:
35
+ logger.info("%s is not in the checkpoint" % k)
36
+ new_state_dict[k] = v
37
+ if hasattr(model, 'module'):
38
+ model.module.load_state_dict(new_state_dict)
39
+ else:
40
+ model.load_state_dict(new_state_dict)
41
+ logger.info("Loaded checkpoint '{}' (iteration {})" .format(
42
+ checkpoint_path, iteration))
43
+ return model, optimizer, learning_rate, iteration
44
+
45
+
46
+ def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
47
+ logger.info("Saving model and optimizer state at iteration {} to {}".format(
48
+ iteration, checkpoint_path))
49
+ if hasattr(model, 'module'):
50
+ state_dict = model.module.state_dict()
51
+ else:
52
+ state_dict = model.state_dict()
53
+ torch.save({'model': state_dict,
54
+ 'iteration': iteration,
55
+ 'optimizer': optimizer.state_dict(),
56
+ 'learning_rate': learning_rate}, checkpoint_path)
57
+
58
+
59
+ def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
60
+ for k, v in scalars.items():
61
+ writer.add_scalar(k, v, global_step)
62
+ for k, v in histograms.items():
63
+ writer.add_histogram(k, v, global_step)
64
+ for k, v in images.items():
65
+ writer.add_image(k, v, global_step, dataformats='HWC')
66
+ for k, v in audios.items():
67
+ writer.add_audio(k, v, global_step, audio_sampling_rate)
68
+
69
+
70
+ def latest_checkpoint_path(dir_path, regex="G_*.pth"):
71
+ f_list = glob.glob(os.path.join(dir_path, regex))
72
+ f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
73
+ x = f_list[-1]
74
+ print(x)
75
+ return x
76
+
77
+
78
+ def plot_spectrogram_to_numpy(spectrogram):
79
+ global MATPLOTLIB_FLAG
80
+ if not MATPLOTLIB_FLAG:
81
+ import matplotlib
82
+ matplotlib.use("Agg")
83
+ MATPLOTLIB_FLAG = True
84
+ mpl_logger = logging.getLogger('matplotlib')
85
+ mpl_logger.setLevel(logging.WARNING)
86
+ import matplotlib.pylab as plt
87
+ import numpy as np
88
+
89
+ fig, ax = plt.subplots(figsize=(10,2))
90
+ im = ax.imshow(spectrogram, aspect="auto", origin="lower",
91
+ interpolation='none')
92
+ plt.colorbar(im, ax=ax)
93
+ plt.xlabel("Frames")
94
+ plt.ylabel("Channels")
95
+ plt.tight_layout()
96
+
97
+ fig.canvas.draw()
98
+ data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
99
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
100
+ plt.close()
101
+ return data
102
+
103
+
104
+ def plot_alignment_to_numpy(alignment, info=None):
105
+ global MATPLOTLIB_FLAG
106
+ if not MATPLOTLIB_FLAG:
107
+ import matplotlib
108
+ matplotlib.use("Agg")
109
+ MATPLOTLIB_FLAG = True
110
+ mpl_logger = logging.getLogger('matplotlib')
111
+ mpl_logger.setLevel(logging.WARNING)
112
+ import matplotlib.pylab as plt
113
+ import numpy as np
114
+
115
+ fig, ax = plt.subplots(figsize=(6, 4))
116
+ im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
117
+ interpolation='none')
118
+ fig.colorbar(im, ax=ax)
119
+ xlabel = 'Decoder timestep'
120
+ if info is not None:
121
+ xlabel += '\n\n' + info
122
+ plt.xlabel(xlabel)
123
+ plt.ylabel('Encoder timestep')
124
+ plt.tight_layout()
125
+
126
+ fig.canvas.draw()
127
+ data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
128
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
129
+ plt.close()
130
+ return data
131
+
132
+
133
+ def load_wav_to_torch(full_path):
134
+ sampling_rate, data = read(full_path)
135
+ return torch.FloatTensor(data.astype(np.float32)), sampling_rate
136
+
137
+ def load_unit_audio_pairs(filename, split="|"):
138
+ with open(filename, encoding='utf-8') as f:
139
+ unit_audio_pairs = [line.strip().split(split) for line in f]
140
+ return unit_audio_pairs
141
+
142
+ def get_hparams(init=True):
143
+ parser = argparse.ArgumentParser()
144
+ parser.add_argument('-c', '--config', type=str, default="./configs/base.json",
145
+ help='JSON file for configuration')
146
+ parser.add_argument('-m', '--model', type=str, required=True,
147
+ help='Model name')
148
+
149
+ args = parser.parse_args()
150
+
151
+ model_dir = os.path.join("./logs", args.model)
152
+ if not os.path.exists(model_dir):
153
+ os.makedirs(model_dir)
154
+
155
+ config_path = args.config
156
+ config_save_path = os.path.join(model_dir, "config.json")
157
+ if init:
158
+ with open(config_path, "r") as f:
159
+ data = f.read()
160
+ with open(config_save_path, "w") as f:
161
+ f.write(data)
162
+ else:
163
+ with open(config_save_path, "r") as f:
164
+ data = f.read()
165
+ config = json.loads(data)
166
+
167
+ hparams = HParams(**config)
168
+ hparams.model_dir = model_dir
169
+ return hparams
170
+
171
+
172
+ def get_hparams_from_dir(model_dir):
173
+ config_save_path = os.path.join(model_dir, "config.json")
174
+ with open(config_save_path, "r") as f:
175
+ data = f.read()
176
+ config = json.loads(data)
177
+
178
+ hparams =HParams(**config)
179
+ hparams.model_dir = model_dir
180
+ return hparams
181
+
182
+
183
+ def get_hparams_from_file(config_path):
184
+ with open(config_path, "r") as f:
185
+ data = f.read()
186
+ config = json.loads(data)
187
+
188
+ hparams =HParams(**config)
189
+ return hparams
190
+
191
+
192
+ def check_git_hash(model_dir):
193
+ source_dir = os.path.dirname(os.path.realpath(__file__))
194
+ if not os.path.exists(os.path.join(source_dir, ".git")):
195
+ logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
196
+ source_dir
197
+ ))
198
+ return
199
+
200
+ cur_hash = subprocess.getoutput("git rev-parse HEAD")
201
+
202
+ path = os.path.join(model_dir, "githash")
203
+ if os.path.exists(path):
204
+ saved_hash = open(path).read()
205
+ if saved_hash != cur_hash:
206
+ logger.warn("git hash values are different. {}(saved) != {}(current)".format(
207
+ saved_hash[:8], cur_hash[:8]))
208
+ else:
209
+ open(path, "w").write(cur_hash)
210
+
211
+
212
+ def get_logger(model_dir, filename="train.log"):
213
+ global logger
214
+ logger = logging.getLogger(os.path.basename(model_dir))
215
+ logger.setLevel(logging.DEBUG)
216
+
217
+ formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
218
+ if not os.path.exists(model_dir):
219
+ os.makedirs(model_dir)
220
+ h = logging.FileHandler(os.path.join(model_dir, filename))
221
+ h.setLevel(logging.DEBUG)
222
+ h.setFormatter(formatter)
223
+ logger.addHandler(h)
224
+ return logger
225
+
226
+
227
+ class HParams():
228
+ def __init__(self, **kwargs):
229
+ for k, v in kwargs.items():
230
+ if type(v) == dict:
231
+ v = HParams(**v)
232
+ self[k] = v
233
+
234
+ def keys(self):
235
+ return self.__dict__.keys()
236
+
237
+ def items(self):
238
+ return self.__dict__.items()
239
+
240
+ def values(self):
241
+ return self.__dict__.values()
242
+
243
+ def __len__(self):
244
+ return len(self.__dict__)
245
+
246
+ def __getitem__(self, key):
247
+ return getattr(self, key)
248
+
249
+ def __setitem__(self, key, value):
250
+ return setattr(self, key, value)
251
+
252
+ def __contains__(self, key):
253
+ return key in self.__dict__
254
+
255
+ def __repr__(self):
256
+ return self.__dict__.__repr__()