import gradio as gr import re from transformers import ( AutoTokenizer, AutoModelForSeq2SeqLM ) def clean_text(text): text = text.encode("ascii", errors="ignore").decode( "ascii" ) # remove non-ascii, Chinese characters text = re.sub(r"\n", " ", text) text = re.sub(r"\n\n", " ", text) text = re.sub(r"\t", " ", text) text = text.strip(" ") text = re.sub( " +", " ", text ).strip() # get rid of multiple spaces and replace with a single return text modchoice_1 = "chinhon/bart-large-cnn-summarizer_03" def summarizer1(text): input_text = clean_text(text) tokenizer_1 = AutoTokenizer.from_pretrained(modchoice_1) model_1 = AutoModelForSeq2SeqLM.from_pretrained(modchoice_1) with tokenizer_1.as_target_tokenizer(): batch = tokenizer_1( input_text, truncation=True, padding="longest", return_tensors="pt" ) raw_1 = model_1.generate(**batch) summary_1 = tokenizer_1.batch_decode(raw_1, skip_special_tokens=True) summed_1 = summary_1[0] lines1 = summed_1.split(". ") for i in range(len(lines1)): lines1[i] = "* " + lines1[i] summ_bullet1 = "\n".join(lines1) return summ_bullet1 summary1 = gr.Interface( fn=summarizer1, inputs=gr.inputs.Textbox(), outputs=gr.outputs.Textbox(label="") ) modchoice_2 = ( "chinhon/pegasus-newsroom-summarizer_02" ) def summarizer2(text): input_text = clean_text(text) tokenizer_2 = AutoTokenizer.from_pretrained(modchoice_2) model_2 = AutoModelForSeq2SeqLM.from_pretrained(modchoice_2) with tokenizer_2.as_target_tokenizer(): batch = tokenizer_2( input_text, truncation=True, padding="longest", return_tensors="pt" ) raw_2 = model_2.generate(**batch) summary_2 = tokenizer_2.batch_decode(raw_2, skip_special_tokens=True) summed_2 = summary_2[0] lines2 = summed_2.split(". ") for i in range(len(lines2)): lines2[i] = "* " + lines2[i] summ_bullet2 = "\n".join(lines2) return summ_bullet2 summary2 = gr.Interface( fn=summarizer2, inputs=gr.inputs.Textbox(), outputs=gr.outputs.Textbox(label="") ) gradio_ui = gr.Parallel( summary1, summary2, title="Compare 2 AI Summarizers", inputs=gr.inputs.Textbox( lines=20, label="Paste your news story here, and choose from 2 suggested summaries", ), theme="huggingface", ) gradio_ui.launch(enable_queue=True)