Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
import random | |
import torch | |
import cv2 | |
import re | |
import uuid | |
from PIL import Image | |
import numpy as np | |
import argparse | |
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation | |
from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering | |
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation | |
from diffusers import StableDiffusionPipeline, StableDiffusionInpaintPipeline, StableDiffusionInstructPix2PixPipeline | |
from diffusers import EulerAncestralDiscreteScheduler | |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler | |
from controlnet_aux import OpenposeDetector, MLSDdetector, HEDdetector | |
from langchain.agents.initialize import initialize_agent | |
from langchain.agents.tools import Tool | |
from langchain.chains.conversation.memory import ConversationBufferMemory | |
from langchain.llms import OpenAIChat | |
VISUAL_CHATGPT_PREFIX = """Visual ChatGPT is designed to be able to assist with a wide range of text and visual related tasks, from answering simple questions to providing in-depth explanations and discussions on a wide range of topics. Visual ChatGPT is able to generate human-like text based on the input it receives, allowing it to engage in natural-sounding conversations and provide responses that are coherent and relevant to the topic at hand. | |
Visual ChatGPT is able to process and understand large amounts of text and images. As a language model, Visual ChatGPT can not directly read images, but it has a list of tools to finish different visual tasks. Each image will have a file name formed as "image/xxx.png", and Visual ChatGPT can invoke different tools to indirectly understand pictures. When talking about images, Visual ChatGPT is very strict to the file name and will never fabricate nonexistent files. When using tools to generate new image files, Visual ChatGPT is also known that the image may not be the same as the user's demand, and will use other visual question answering tools or description tools to observe the real image. Visual ChatGPT is able to use tools in a sequence, and is loyal to the tool observation outputs rather than faking the image content and image file name. It will remember to provide the file name from the last tool observation, if a new image is generated. | |
Human may provide new figures to Visual ChatGPT with a description. The description helps Visual ChatGPT to understand this image, but Visual ChatGPT should use tools to finish following tasks, rather than directly imagine from the description. | |
Overall, Visual ChatGPT is a powerful visual dialogue assistant tool that can help with a wide range of tasks and provide valuable insights and information on a wide range of topics. | |
TOOLS: | |
------ | |
Visual ChatGPT has access to the following tools:""" | |
VISUAL_CHATGPT_FORMAT_INSTRUCTIONS = """To use a tool, please use the following format: | |
``` | |
Thought: Do I need to use a tool? Yes | |
Action: the action to take, should be one of [{tool_names}] | |
Action Input: the input to the action | |
Observation: the result of the action | |
``` | |
When you have a response to say to the Human, or if you do not need to use a tool, you MUST use the format: | |
``` | |
Thought: Do I need to use a tool? No | |
{ai_prefix}: [your response here] | |
``` | |
""" | |
VISUAL_CHATGPT_SUFFIX = """You are very strict to the filename correctness and will never fake a file name if it does not exist. | |
You will remember to provide the image file name loyally if it's provided in the last tool observation. | |
Begin! | |
Previous conversation history: | |
{chat_history} | |
New input: {input} | |
Since Visual ChatGPT is a text language model, Visual ChatGPT must use tools to observe images rather than imagination. | |
The thoughts and observations are only visible for Visual ChatGPT, Visual ChatGPT should remember to repeat important information in the final response for Human. | |
Thought: Do I need to use a tool? {agent_scratchpad}""" | |
os.makedirs('image', exist_ok=True) | |
def seed_everything(seed): | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
return seed | |
def prompts(name, description): | |
def decorator(func): | |
func.name = name | |
func.description = description | |
return func | |
return decorator | |
def cut_dialogue_history(history_memory, keep_last_n_words=500): | |
if history_memory is None or len(history_memory) == 0: | |
return history_memory | |
tokens = history_memory.split() | |
n_tokens = len(tokens) | |
print(f"history_memory:{history_memory}, n_tokens: {n_tokens}") | |
if n_tokens < keep_last_n_words: | |
return history_memory | |
paragraphs = history_memory.split('\n') | |
last_n_tokens = n_tokens | |
while last_n_tokens >= keep_last_n_words: | |
last_n_tokens -= len(paragraphs[0].split(' ')) | |
paragraphs = paragraphs[1:] | |
return '\n' + '\n'.join(paragraphs) | |
def get_new_image_name(org_img_name, func_name="update"): | |
head_tail = os.path.split(org_img_name) | |
head = head_tail[0] | |
tail = head_tail[1] | |
name_split = tail.split('.')[0].split('_') | |
this_new_uuid = str(uuid.uuid4())[:4] | |
if len(name_split) == 1: | |
most_org_file_name = name_split[0] | |
else: | |
assert len(name_split) == 4 | |
most_org_file_name = name_split[3] | |
recent_prev_file_name = name_split[0] | |
new_file_name = f'{this_new_uuid}_{func_name}_{recent_prev_file_name}_{most_org_file_name}.png' | |
return os.path.join(head, new_file_name) | |
class MaskFormer: | |
def __init__(self, device): | |
print(f"Initializing MaskFormer to {device}") | |
self.device = device | |
self.processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") | |
self.model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined").to(device) | |
def inference(self, image_path, text): | |
threshold = 0.5 | |
min_area = 0.02 | |
padding = 20 | |
original_image = Image.open(image_path) | |
image = original_image.resize((512, 512)) | |
inputs = self.processor(text=text, images=image, padding="max_length", return_tensors="pt").to(self.device) | |
with torch.no_grad(): | |
outputs = self.model(**inputs) | |
mask = torch.sigmoid(outputs[0]).squeeze().cpu().numpy() > threshold | |
area_ratio = len(np.argwhere(mask)) / (mask.shape[0] * mask.shape[1]) | |
if area_ratio < min_area: | |
return None | |
true_indices = np.argwhere(mask) | |
mask_array = np.zeros_like(mask, dtype=bool) | |
for idx in true_indices: | |
padded_slice = tuple(slice(max(0, i - padding), i + padding + 1) for i in idx) | |
mask_array[padded_slice] = True | |
visual_mask = (mask_array * 255).astype(np.uint8) | |
image_mask = Image.fromarray(visual_mask) | |
return image_mask.resize(original_image.size) | |
class ImageEditing: | |
def __init__(self, device): | |
print(f"Initializing ImageEditing to {device}") | |
self.device = device | |
self.mask_former = MaskFormer(device=self.device) | |
self.revision = 'fp16' if 'cuda' in device else None | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.inpaint = StableDiffusionInpaintPipeline.from_pretrained( | |
"runwayml/stable-diffusion-inpainting", revision=self.revision, torch_dtype=self.torch_dtype).to(device) | |
def inference_remove(self, inputs): | |
image_path, to_be_removed_txt = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
return self.inference_replace(f"{image_path},{to_be_removed_txt},background") | |
def inference_replace(self, inputs): | |
image_path, to_be_replaced_txt, replace_with_txt = inputs.split(",") | |
original_image = Image.open(image_path) | |
original_size = original_image.size | |
mask_image = self.mask_former.inference(image_path, to_be_replaced_txt) | |
updated_image = self.inpaint(prompt=replace_with_txt, image=original_image.resize((512, 512)), | |
mask_image=mask_image.resize((512, 512))).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="replace-something") | |
updated_image = updated_image.resize(original_size) | |
updated_image.save(updated_image_path) | |
print( | |
f"\nProcessed ImageEditing, Input Image: {image_path}, Replace {to_be_replaced_txt} to {replace_with_txt}, " | |
f"Output Image: {updated_image_path}") | |
return updated_image_path | |
class InstructPix2Pix: | |
def __init__(self, device): | |
print(f"Initializing InstructPix2Pix to {device}") | |
self.device = device | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained("timbrooks/instruct-pix2pix", | |
safety_checker=None, | |
torch_dtype=self.torch_dtype).to(device) | |
self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config) | |
def inference(self, inputs): | |
"""Change style of image.""" | |
print("===>Starting InstructPix2Pix Inference") | |
image_path, text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
original_image = Image.open(image_path) | |
image = self.pipe(text, image=original_image, num_inference_steps=40, image_guidance_scale=1.2).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="pix2pix") | |
image.save(updated_image_path) | |
print(f"\nProcessed InstructPix2Pix, Input Image: {image_path}, Instruct Text: {text}, " | |
f"Output Image: {updated_image_path}") | |
return updated_image_path | |
class Text2Image: | |
def __init__(self, device): | |
print(f"Initializing Text2Image to {device}") | |
self.device = device | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", | |
torch_dtype=self.torch_dtype) | |
self.pipe.to(device) | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \ | |
'fewer digits, cropped, worst quality, low quality' | |
def inference(self, text): | |
image_filename = os.path.join('image', f"{str(uuid.uuid4())[:8]}.png") | |
prompt = text + ', ' + self.a_prompt | |
image = self.pipe(prompt, negative_prompt=self.n_prompt).images[0] | |
image.save(image_filename) | |
print( | |
f"\nProcessed Text2Image, Input Text: {text}, Output Image: {image_filename}") | |
return image_filename | |
class ImageCaptioning: | |
def __init__(self, device): | |
print(f"Initializing ImageCaptioning to {device}") | |
self.device = device | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") | |
self.model = BlipForConditionalGeneration.from_pretrained( | |
"Salesforce/blip-image-captioning-base", torch_dtype=self.torch_dtype).to(self.device) | |
def inference(self, image_path): | |
inputs = self.processor(Image.open(image_path), return_tensors="pt").to(self.device, self.torch_dtype) | |
out = self.model.generate(**inputs) | |
captions = self.processor.decode(out[0], skip_special_tokens=True) | |
print(f"\nProcessed ImageCaptioning, Input Image: {image_path}, Output Text: {captions}") | |
return captions | |
class Image2Canny: | |
def __init__(self, device): | |
print("Initializing Image2Canny") | |
self.low_threshold = 100 | |
self.high_threshold = 200 | |
def inference(self, inputs): | |
image = Image.open(inputs) | |
image = np.array(image) | |
canny = cv2.Canny(image, self.low_threshold, self.high_threshold) | |
canny = canny[:, :, None] | |
canny = np.concatenate([canny, canny, canny], axis=2) | |
canny = Image.fromarray(canny) | |
updated_image_path = get_new_image_name(inputs, func_name="edge") | |
canny.save(updated_image_path) | |
print(f"\nProcessed Image2Canny, Input Image: {inputs}, Output Text: {updated_image_path}") | |
return updated_image_path | |
class CannyText2Image: | |
def __init__(self, device): | |
print(f"Initializing CannyText2Image to {device}") | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-canny", | |
torch_dtype=self.torch_dtype) | |
self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, | |
torch_dtype=self.torch_dtype) | |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
self.pipe.to(device) | |
self.seed = -1 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \ | |
'fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
prompt = f'{instruct_text}, {self.a_prompt}' | |
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, | |
guidance_scale=9.0).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="canny2image") | |
image.save(updated_image_path) | |
print(f"\nProcessed CannyText2Image, Input Canny: {image_path}, Input Text: {instruct_text}, " | |
f"Output Text: {updated_image_path}") | |
return updated_image_path | |
class Image2Line: | |
def __init__(self, device): | |
print("Initializing Image2Line") | |
self.detector = MLSDdetector.from_pretrained('lllyasviel/ControlNet') | |
def inference(self, inputs): | |
image = Image.open(inputs) | |
mlsd = self.detector(image) | |
updated_image_path = get_new_image_name(inputs, func_name="line-of") | |
mlsd.save(updated_image_path) | |
print(f"\nProcessed Image2Line, Input Image: {inputs}, Output Line: {updated_image_path}") | |
return updated_image_path | |
class LineText2Image: | |
def __init__(self, device): | |
print(f"Initializing LineText2Image to {device}") | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-mlsd", | |
torch_dtype=self.torch_dtype) | |
self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, | |
torch_dtype=self.torch_dtype | |
) | |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
self.pipe.to(device) | |
self.seed = -1 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \ | |
'fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
prompt = f'{instruct_text}, {self.a_prompt}' | |
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, | |
guidance_scale=9.0).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="line2image") | |
image.save(updated_image_path) | |
print(f"\nProcessed LineText2Image, Input Line: {image_path}, Input Text: {instruct_text}, " | |
f"Output Text: {updated_image_path}") | |
return updated_image_path | |
class Image2Hed: | |
def __init__(self, device): | |
print("Initializing Image2Hed") | |
self.detector = HEDdetector.from_pretrained('lllyasviel/ControlNet') | |
def inference(self, inputs): | |
image = Image.open(inputs) | |
hed = self.detector(image) | |
updated_image_path = get_new_image_name(inputs, func_name="hed-boundary") | |
hed.save(updated_image_path) | |
print(f"\nProcessed Image2Hed, Input Image: {inputs}, Output Hed: {updated_image_path}") | |
return updated_image_path | |
class HedText2Image: | |
def __init__(self, device): | |
print(f"Initializing HedText2Image to {device}") | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-hed", | |
torch_dtype=self.torch_dtype) | |
self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, | |
torch_dtype=self.torch_dtype | |
) | |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
self.pipe.to(device) | |
self.seed = -1 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \ | |
'fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
prompt = f'{instruct_text}, {self.a_prompt}' | |
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, | |
guidance_scale=9.0).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="hed2image") | |
image.save(updated_image_path) | |
print(f"\nProcessed HedText2Image, Input Hed: {image_path}, Input Text: {instruct_text}, " | |
f"Output Image: {updated_image_path}") | |
return updated_image_path | |
class Image2Scribble: | |
def __init__(self, device): | |
print("Initializing Image2Scribble") | |
self.detector = HEDdetector.from_pretrained('lllyasviel/ControlNet') | |
def inference(self, inputs): | |
image = Image.open(inputs) | |
scribble = self.detector(image, scribble=True) | |
updated_image_path = get_new_image_name(inputs, func_name="scribble") | |
scribble.save(updated_image_path) | |
print(f"\nProcessed Image2Scribble, Input Image: {inputs}, Output Scribble: {updated_image_path}") | |
return updated_image_path | |
class ScribbleText2Image: | |
def __init__(self, device): | |
print(f"Initializing ScribbleText2Image to {device}") | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-scribble", | |
torch_dtype=self.torch_dtype) | |
self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, | |
torch_dtype=self.torch_dtype | |
) | |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
self.pipe.to(device) | |
self.seed = -1 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \ | |
'fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
prompt = f'{instruct_text}, {self.a_prompt}' | |
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, | |
guidance_scale=9.0).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="scribble2image") | |
image.save(updated_image_path) | |
print(f"\nProcessed ScribbleText2Image, Input Scribble: {image_path}, Input Text: {instruct_text}, " | |
f"Output Image: {updated_image_path}") | |
return updated_image_path | |
class Image2Pose: | |
def __init__(self, device): | |
print("Initializing Image2Pose") | |
self.detector = OpenposeDetector.from_pretrained('lllyasviel/ControlNet') | |
def inference(self, inputs): | |
image = Image.open(inputs) | |
pose = self.detector(image) | |
updated_image_path = get_new_image_name(inputs, func_name="human-pose") | |
pose.save(updated_image_path) | |
print(f"\nProcessed Image2Pose, Input Image: {inputs}, Output Pose: {updated_image_path}") | |
return updated_image_path | |
class PoseText2Image: | |
def __init__(self, device): | |
print(f"Initializing PoseText2Image to {device}") | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-openpose", | |
torch_dtype=self.torch_dtype) | |
self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, | |
torch_dtype=self.torch_dtype) | |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
self.pipe.to(device) | |
self.num_inference_steps = 20 | |
self.seed = -1 | |
self.unconditional_guidance_scale = 9.0 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \ | |
' fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
prompt = f'{instruct_text}, {self.a_prompt}' | |
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, | |
guidance_scale=9.0).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="pose2image") | |
image.save(updated_image_path) | |
print(f"\nProcessed PoseText2Image, Input Pose: {image_path}, Input Text: {instruct_text}, " | |
f"Output Image: {updated_image_path}") | |
return updated_image_path | |
class Image2Seg: | |
def __init__(self, device): | |
print("Initializing Image2Seg") | |
self.image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small") | |
self.image_segmentor = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small") | |
self.ade_palette = [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50], | |
[4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255], | |
[230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7], | |
[150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82], | |
[143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3], | |
[0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255], | |
[255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220], | |
[255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224], | |
[255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255], | |
[224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7], | |
[255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153], | |
[6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255], | |
[140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0], | |
[255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255], | |
[255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255], | |
[11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255], | |
[0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0], | |
[255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0], | |
[0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255], | |
[173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255], | |
[255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20], | |
[255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255], | |
[255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255], | |
[0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255], | |
[0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0], | |
[143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0], | |
[8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255], | |
[255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112], | |
[92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160], | |
[163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163], | |
[255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0], | |
[255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0], | |
[10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255], | |
[255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204], | |
[41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255], | |
[71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255], | |
[184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194], | |
[102, 255, 0], [92, 0, 255]] | |
def inference(self, inputs): | |
image = Image.open(inputs) | |
pixel_values = self.image_processor(image, return_tensors="pt").pixel_values | |
with torch.no_grad(): | |
outputs = self.image_segmentor(pixel_values) | |
seg = self.image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0] | |
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3 | |
palette = np.array(self.ade_palette) | |
for label, color in enumerate(palette): | |
color_seg[seg == label, :] = color | |
color_seg = color_seg.astype(np.uint8) | |
segmentation = Image.fromarray(color_seg) | |
updated_image_path = get_new_image_name(inputs, func_name="segmentation") | |
segmentation.save(updated_image_path) | |
print(f"\nProcessed Image2Pose, Input Image: {inputs}, Output Pose: {updated_image_path}") | |
return updated_image_path | |
class SegText2Image: | |
def __init__(self, device): | |
print(f"Initializing SegText2Image to {device}") | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-seg", | |
torch_dtype=self.torch_dtype) | |
self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, | |
torch_dtype=self.torch_dtype) | |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
self.pipe.to(device) | |
self.seed = -1 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \ | |
' fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
prompt = f'{instruct_text}, {self.a_prompt}' | |
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, | |
guidance_scale=9.0).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="segment2image") | |
image.save(updated_image_path) | |
print(f"\nProcessed SegText2Image, Input Seg: {image_path}, Input Text: {instruct_text}, " | |
f"Output Image: {updated_image_path}") | |
return updated_image_path | |
class Image2Depth: | |
def __init__(self, device): | |
print("Initializing Image2Depth") | |
self.depth_estimator = pipeline('depth-estimation') | |
def inference(self, inputs): | |
image = Image.open(inputs) | |
depth = self.depth_estimator(image)['depth'] | |
depth = np.array(depth) | |
depth = depth[:, :, None] | |
depth = np.concatenate([depth, depth, depth], axis=2) | |
depth = Image.fromarray(depth) | |
updated_image_path = get_new_image_name(inputs, func_name="depth") | |
depth.save(updated_image_path) | |
print(f"\nProcessed Image2Depth, Input Image: {inputs}, Output Depth: {updated_image_path}") | |
return updated_image_path | |
class DepthText2Image: | |
def __init__(self, device): | |
print(f"Initializing DepthText2Image to {device}") | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.controlnet = ControlNetModel.from_pretrained( | |
"fusing/stable-diffusion-v1-5-controlnet-depth", torch_dtype=self.torch_dtype) | |
self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, | |
torch_dtype=self.torch_dtype) | |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
self.pipe.to(device) | |
self.seed = -1 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \ | |
' fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
prompt = f'{instruct_text}, {self.a_prompt}' | |
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, | |
guidance_scale=9.0).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="depth2image") | |
image.save(updated_image_path) | |
print(f"\nProcessed DepthText2Image, Input Depth: {image_path}, Input Text: {instruct_text}, " | |
f"Output Image: {updated_image_path}") | |
return updated_image_path | |
class Image2Normal: | |
def __init__(self, device): | |
print("Initializing Image2Normal") | |
self.depth_estimator = pipeline("depth-estimation", model="Intel/dpt-hybrid-midas") | |
self.bg_threhold = 0.4 | |
def inference(self, inputs): | |
image = Image.open(inputs) | |
original_size = image.size | |
image = self.depth_estimator(image)['predicted_depth'][0] | |
image = image.numpy() | |
image_depth = image.copy() | |
image_depth -= np.min(image_depth) | |
image_depth /= np.max(image_depth) | |
x = cv2.Sobel(image, cv2.CV_32F, 1, 0, ksize=3) | |
x[image_depth < self.bg_threhold] = 0 | |
y = cv2.Sobel(image, cv2.CV_32F, 0, 1, ksize=3) | |
y[image_depth < self.bg_threhold] = 0 | |
z = np.ones_like(x) * np.pi * 2.0 | |
image = np.stack([x, y, z], axis=2) | |
image /= np.sum(image ** 2.0, axis=2, keepdims=True) ** 0.5 | |
image = (image * 127.5 + 127.5).clip(0, 255).astype(np.uint8) | |
image = Image.fromarray(image) | |
image = image.resize(original_size) | |
updated_image_path = get_new_image_name(inputs, func_name="normal-map") | |
image.save(updated_image_path) | |
print(f"\nProcessed Image2Normal, Input Image: {inputs}, Output Depth: {updated_image_path}") | |
return updated_image_path | |
class NormalText2Image: | |
def __init__(self, device): | |
print(f"Initializing NormalText2Image to {device}") | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.controlnet = ControlNetModel.from_pretrained( | |
"fusing/stable-diffusion-v1-5-controlnet-normal", torch_dtype=self.torch_dtype) | |
self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, | |
torch_dtype=self.torch_dtype) | |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
self.pipe.to(device) | |
self.seed = -1 | |
self.a_prompt = 'best quality, extremely detailed' | |
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \ | |
' fewer digits, cropped, worst quality, low quality' | |
def inference(self, inputs): | |
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
image = Image.open(image_path) | |
self.seed = random.randint(0, 65535) | |
seed_everything(self.seed) | |
prompt = f'{instruct_text}, {self.a_prompt}' | |
image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, | |
guidance_scale=9.0).images[0] | |
updated_image_path = get_new_image_name(image_path, func_name="normal2image") | |
image.save(updated_image_path) | |
print(f"\nProcessed NormalText2Image, Input Normal: {image_path}, Input Text: {instruct_text}, " | |
f"Output Image: {updated_image_path}") | |
return updated_image_path | |
class VisualQuestionAnswering: | |
def __init__(self, device): | |
print(f"Initializing VisualQuestionAnswering to {device}") | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.device = device | |
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base") | |
self.model = BlipForQuestionAnswering.from_pretrained( | |
"Salesforce/blip-vqa-base", torch_dtype=self.torch_dtype).to(self.device) | |
def inference(self, inputs): | |
image_path, question = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) | |
raw_image = Image.open(image_path).convert('RGB') | |
inputs = self.processor(raw_image, question, return_tensors="pt").to(self.device, self.torch_dtype) | |
out = self.model.generate(**inputs) | |
answer = self.processor.decode(out[0], skip_special_tokens=True) | |
print(f"\nProcessed VisualQuestionAnswering, Input Image: {image_path}, Input Question: {question}, " | |
f"Output Answer: {answer}") | |
return answer | |
class ConversationBot: | |
def __init__(self, load_dict): | |
# load_dict = {'VisualQuestionAnswering':'cuda:0', 'ImageCaptioning':'cuda:1',...} | |
print(f"Initializing VisualChatGPT, load_dict={load_dict}") | |
if 'ImageCaptioning' not in load_dict: | |
raise ValueError("You have to load ImageCaptioning as a basic function for VisualChatGPT") | |
self.llm = OpenAIChat(temperature=0) | |
self.memory = ConversationBufferMemory(memory_key="chat_history", output_key='output') | |
self.models = {} | |
for class_name, device in load_dict.items(): | |
self.models[class_name] = globals()[class_name](device=device) | |
self.tools = [] | |
for instance in self.models.values(): | |
for e in dir(instance): | |
if e.startswith('inference'): | |
func = getattr(instance, e) | |
self.tools.append(Tool(name=func.name, description=func.description, func=func)) | |
self.agent = initialize_agent( | |
self.tools, | |
self.llm, | |
agent="conversational-react-description", | |
verbose=True, | |
memory=self.memory, | |
return_intermediate_steps=True, | |
agent_kwargs={'prefix': VISUAL_CHATGPT_PREFIX, 'format_instructions': VISUAL_CHATGPT_FORMAT_INSTRUCTIONS, | |
'suffix': VISUAL_CHATGPT_SUFFIX}, ) | |
def run_text(self, text, state): | |
self.agent.memory.buffer = cut_dialogue_history(self.agent.memory.buffer, keep_last_n_words=500) | |
res = self.agent({"input": text}) | |
res['output'] = res['output'].replace("\\", "/") | |
response = re.sub('(image/\S*png)', lambda m: f'![](/file={m.group(0)})*{m.group(0)}*', res['output']) | |
state = state + [(text, response)] | |
print(f"\nProcessed run_text, Input text: {text}\nCurrent state: {state}\n" | |
f"Current Memory: {self.agent.memory.buffer}") | |
return state, state | |
def run_image(self, image, state, txt): | |
image_filename = os.path.join('image', f"{str(uuid.uuid4())[:8]}.png") | |
print("======>Auto Resize Image...") | |
img = Image.open(image.name) | |
width, height = img.size | |
ratio = min(512 / width, 512 / height) | |
width_new, height_new = (round(width * ratio), round(height * ratio)) | |
width_new = int(np.round(width_new / 64.0)) * 64 | |
height_new = int(np.round(height_new / 64.0)) * 64 | |
img = img.resize((width_new, height_new)) | |
img = img.convert('RGB') | |
img.save(image_filename, "PNG") | |
print(f"Resize image form {width}x{height} to {width_new}x{height_new}") | |
description = self.models['ImageCaptioning'].inference(image_filename) | |
Human_prompt = f'\nHuman: provide a figure named {image_filename}. The description is: {description}. This information helps you to understand this image, but you should use tools to finish following tasks, rather than directly imagine from my description. If you understand, say \"Received\". \n' | |
AI_prompt = "Received. " | |
self.agent.memory.buffer = self.agent.memory.buffer + Human_prompt + 'AI: ' + AI_prompt | |
state = state + [(f"![](/file={image_filename})*{image_filename}*", AI_prompt)] | |
print(f"\nProcessed run_image, Input image: {image_filename}\nCurrent state: {state}\n" | |
f"Current Memory: {self.agent.memory.buffer}") | |
return state, state, f'{txt} {image_filename} ' | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--load', type=str, default="ImageCaptioning_cuda:0,Text2Image_cuda:0") | |
args = parser.parse_args() | |
load_dict = {e.split('_')[0].strip(): e.split('_')[1].strip() for e in args.load.split(',')} | |
bot = ConversationBot(load_dict=load_dict) | |
with gr.Blocks(css="#chatbot .overflow-y-auto{height:500px}") as demo: | |
chatbot = gr.Chatbot(elem_id="chatbot", label="Visual ChatGPT") | |
state = gr.State([]) | |
with gr.Row(): | |
with gr.Column(scale=0.7): | |
txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter, or upload an image").style( | |
container=False) | |
with gr.Column(scale=0.15, min_width=0): | |
clear = gr.Button("Clear") | |
with gr.Column(scale=0.15, min_width=0): | |
btn = gr.UploadButton("Upload", file_types=["image"]) | |
txt.submit(bot.run_text, [txt, state], [chatbot, state]) | |
txt.submit(lambda: "", None, txt) | |
btn.upload(bot.run_image, [btn, state, txt], [chatbot, state, txt]) | |
clear.click(bot.memory.clear) | |
clear.click(lambda: [], None, chatbot) | |
clear.click(lambda: [], None, state) | |
demo.launch(server_name="0.0.0.0", server_port=7868) | |