Spaces:
Sleeping
Sleeping
capradeepgujaran
commited on
Commit
β’
d9cfca5
1
Parent(s):
e6032f2
Update app.py
Browse files
app.py
CHANGED
@@ -23,41 +23,11 @@ vector_index = None
|
|
23 |
query_log = []
|
24 |
sentence_model = SentenceTransformer('all-MiniLM-L6-v2')
|
25 |
|
26 |
-
#
|
27 |
-
|
28 |
-
'
|
29 |
-
|
30 |
-
'
|
31 |
-
'spa', # Spanish
|
32 |
-
'ita', # Italian
|
33 |
-
'por', # Portuguese
|
34 |
-
'nld', # Dutch
|
35 |
-
'pol', # Polish
|
36 |
-
'tur', # Turkish
|
37 |
-
'rus', # Russian
|
38 |
-
'ara', # Arabic
|
39 |
-
'hin', # Hindi
|
40 |
-
'jpn', # Japanese
|
41 |
-
'kor', # Korean
|
42 |
-
'chi_sim', # Simplified Chinese
|
43 |
-
'chi_tra' # Traditional Chinese
|
44 |
-
]
|
45 |
-
|
46 |
-
def get_available_languages():
|
47 |
-
"""Get available Tesseract languages with fallback"""
|
48 |
-
try:
|
49 |
-
# Try to get languages from Tesseract
|
50 |
-
langs = os.popen('tesseract --list-langs').read().split('\n')[1:-1]
|
51 |
-
if langs and len(langs) > 0:
|
52 |
-
return sorted(langs)
|
53 |
-
except Exception as e:
|
54 |
-
logging.warning(f"Could not get Tesseract languages: {e}")
|
55 |
-
|
56 |
-
# Fallback to default languages
|
57 |
-
return DEFAULT_LANGS
|
58 |
-
|
59 |
-
# Get available languages once at startup
|
60 |
-
AVAILABLE_LANGUAGES = get_available_languages()
|
61 |
|
62 |
def create_temp_dir():
|
63 |
"""Create temporary directory if it doesn't exist"""
|
@@ -66,30 +36,111 @@ def create_temp_dir():
|
|
66 |
os.makedirs(temp_dir)
|
67 |
return temp_dir
|
68 |
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
def
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
temp_dir = create_temp_dir()
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
def query_app(query, model_name, use_similarity_check, api_key):
|
85 |
-
"""Process a query and return both the answer and the text for generation"""
|
86 |
global vector_index, query_log
|
87 |
|
88 |
if vector_index is None:
|
89 |
-
return "No documents indexed yet. Please upload documents first."
|
90 |
|
91 |
if not api_key:
|
92 |
-
return "Please provide a valid OpenAI API Key."
|
93 |
|
94 |
try:
|
95 |
llm = OpenAI(model=model_name, api_key=api_key)
|
@@ -98,31 +149,24 @@ def query_app(query, model_name, use_similarity_check, api_key):
|
|
98 |
response = query_engine.query(query)
|
99 |
|
100 |
generated_response = response.response
|
101 |
-
return generated_response
|
102 |
|
103 |
except Exception as e:
|
104 |
logging.error(f"Error during query processing: {e}")
|
105 |
-
return f"Error during query processing: {str(e)}"
|
106 |
|
107 |
def create_gradio_interface():
|
108 |
with gr.Blocks(title="Document Processing and TTS App") as demo:
|
109 |
gr.Markdown("# π Document Processing, Text & Audio Generation App")
|
110 |
|
111 |
-
# Store API key at the top level to share across tabs
|
112 |
-
api_key_input = gr.Textbox(
|
113 |
-
label="Enter OpenAI API Key",
|
114 |
-
placeholder="Paste your OpenAI API Key here",
|
115 |
-
type="password"
|
116 |
-
)
|
117 |
-
|
118 |
with gr.Tab("π€ Upload Documents"):
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
value='eng',
|
124 |
-
info="Select the primary language of your documents"
|
125 |
)
|
|
|
|
|
126 |
upload_button = gr.Button("Upload and Index")
|
127 |
upload_status = gr.Textbox(label="Status", interactive=False)
|
128 |
|
@@ -169,10 +213,8 @@ def create_gradio_interface():
|
|
169 |
)
|
170 |
additional_prompt = gr.Textbox(label="Additional Prompt (Optional)")
|
171 |
generate_button = gr.Button("Generate")
|
172 |
-
|
173 |
-
|
174 |
-
audio_output = gr.Audio(label="Generated Audio")
|
175 |
-
summary_output = gr.File(label="Generated Summary Text")
|
176 |
|
177 |
# Wire up the components
|
178 |
upload_button.click(
|
@@ -184,16 +226,11 @@ def create_gradio_interface():
|
|
184 |
query_button.click(
|
185 |
fn=query_app,
|
186 |
inputs=[query_input, model_dropdown, similarity_checkbox, api_key_input],
|
187 |
-
outputs=[answer_output
|
188 |
)
|
189 |
|
190 |
-
def process_generation(*args):
|
191 |
-
audio_file, summary_text = generate_audio_and_text(*args)
|
192 |
-
summary_file = create_summary_file(summary_text) if summary_text else None
|
193 |
-
return audio_file, summary_file
|
194 |
-
|
195 |
generate_button.click(
|
196 |
-
fn=
|
197 |
inputs=[
|
198 |
api_key_input, text_input, model_dropdown, voice_type,
|
199 |
voice_speed, language, output_option, summary_length,
|
@@ -208,4 +245,60 @@ if __name__ == "__main__":
|
|
208 |
demo = create_gradio_interface()
|
209 |
demo.launch()
|
210 |
else:
|
211 |
-
demo = create_gradio_interface()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
query_log = []
|
24 |
sentence_model = SentenceTransformer('all-MiniLM-L6-v2')
|
25 |
|
26 |
+
# Get available languages for OCR
|
27 |
+
try:
|
28 |
+
langs = os.popen('tesseract --list-langs').read().split('\n')[1:-1]
|
29 |
+
except:
|
30 |
+
langs = ['eng'] # Fallback to English if tesseract isn't properly configured
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
def create_temp_dir():
|
33 |
"""Create temporary directory if it doesn't exist"""
|
|
|
36 |
os.makedirs(temp_dir)
|
37 |
return temp_dir
|
38 |
|
39 |
+
def preprocess_image(image_path):
|
40 |
+
img = cv2.imread(image_path)
|
41 |
+
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
42 |
+
gray = cv2.equalizeHist(gray)
|
43 |
+
gray = cv2.GaussianBlur(gray, (5, 5), 0)
|
44 |
+
processed_image = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
45 |
+
cv2.THRESH_BINARY, 11, 2)
|
46 |
+
temp_dir = create_temp_dir()
|
47 |
+
temp_filename = os.path.join(temp_dir, "processed_image.png")
|
48 |
+
cv2.imwrite(temp_filename, processed_image)
|
49 |
+
return temp_filename
|
50 |
|
51 |
+
def extract_text_from_image(image_path, lang='eng'):
|
52 |
+
processed_image_path = preprocess_image(image_path)
|
53 |
+
text = pytesseract.image_to_string(Image.open(processed_image_path), lang=lang)
|
54 |
+
try:
|
55 |
+
os.remove(processed_image_path)
|
56 |
+
except:
|
57 |
+
pass
|
58 |
+
return text
|
59 |
+
|
60 |
+
def extract_text_from_pdf(pdf_path, lang='eng'):
|
61 |
+
text = ""
|
62 |
temp_dir = create_temp_dir()
|
63 |
+
try:
|
64 |
+
with open(pdf_path, 'rb') as file:
|
65 |
+
pdf_reader = PyPDF2.PdfReader(file)
|
66 |
+
for page_num in range(len(pdf_reader.pages)):
|
67 |
+
page = pdf_reader.pages[page_num]
|
68 |
+
page_text = page.extract_text()
|
69 |
+
if page_text.strip():
|
70 |
+
text += page_text
|
71 |
+
else:
|
72 |
+
images = convert_from_path(pdf_path, first_page=page_num + 1, last_page=page_num + 1)
|
73 |
+
for image in images:
|
74 |
+
temp_image_path = os.path.join(temp_dir, f'temp_image_{page_num}.png')
|
75 |
+
image.save(temp_image_path, 'PNG')
|
76 |
+
text += extract_text_from_image(temp_image_path, lang=lang)
|
77 |
+
text += f"\n[OCR applied on page {page_num + 1}]\n"
|
78 |
+
try:
|
79 |
+
os.remove(temp_image_path)
|
80 |
+
except:
|
81 |
+
pass
|
82 |
+
except Exception as e:
|
83 |
+
return f"Error processing PDF: {str(e)}"
|
84 |
+
return text
|
85 |
+
|
86 |
+
def extract_text(file_path, lang='eng'):
|
87 |
+
file_ext = file_path.lower().split('.')[-1]
|
88 |
+
if file_ext in ['pdf']:
|
89 |
+
return extract_text_from_pdf(file_path, lang)
|
90 |
+
elif file_ext in ['png', 'jpg', 'jpeg']:
|
91 |
+
return extract_text_from_image(file_path, lang)
|
92 |
+
else:
|
93 |
+
return f"Unsupported file type: {file_ext}"
|
94 |
+
|
95 |
+
def process_upload(api_key, files, lang):
|
96 |
+
global vector_index
|
97 |
+
|
98 |
+
if not api_key:
|
99 |
+
return "Please provide a valid OpenAI API Key."
|
100 |
+
|
101 |
+
if not files:
|
102 |
+
return "No files uploaded."
|
103 |
+
|
104 |
+
documents = []
|
105 |
+
error_messages = []
|
106 |
+
image_heavy_docs = []
|
107 |
+
|
108 |
+
for file_path in files:
|
109 |
+
try:
|
110 |
+
text = extract_text(file_path, lang)
|
111 |
+
if "This document consists of" in text and "page(s) of images" in text:
|
112 |
+
image_heavy_docs.append(os.path.basename(file_path))
|
113 |
+
documents.append(Document(text=text))
|
114 |
+
except Exception as e:
|
115 |
+
error_message = f"Error processing file {os.path.basename(file_path)}: {str(e)}"
|
116 |
+
logging.error(error_message)
|
117 |
+
error_messages.append(error_message)
|
118 |
+
|
119 |
+
if documents:
|
120 |
+
try:
|
121 |
+
embed_model = OpenAIEmbedding(model="text-embedding-3-large", api_key=api_key)
|
122 |
+
vector_index = VectorStoreIndex.from_documents(documents, embed_model=embed_model)
|
123 |
+
|
124 |
+
success_message = f"Successfully indexed {len(documents)} files."
|
125 |
+
if image_heavy_docs:
|
126 |
+
success_message += f"\nNote: The following documents consist mainly of images and may require manual review: {', '.join(image_heavy_docs)}"
|
127 |
+
if error_messages:
|
128 |
+
success_message += f"\nErrors: {'; '.join(error_messages)}"
|
129 |
+
|
130 |
+
return success_message
|
131 |
+
except Exception as e:
|
132 |
+
return f"Error creating index: {str(e)}"
|
133 |
+
else:
|
134 |
+
return f"No valid documents were indexed. Errors: {'; '.join(error_messages)}"
|
135 |
|
136 |
def query_app(query, model_name, use_similarity_check, api_key):
|
|
|
137 |
global vector_index, query_log
|
138 |
|
139 |
if vector_index is None:
|
140 |
+
return "No documents indexed yet. Please upload documents first."
|
141 |
|
142 |
if not api_key:
|
143 |
+
return "Please provide a valid OpenAI API Key."
|
144 |
|
145 |
try:
|
146 |
llm = OpenAI(model=model_name, api_key=api_key)
|
|
|
149 |
response = query_engine.query(query)
|
150 |
|
151 |
generated_response = response.response
|
152 |
+
return generated_response
|
153 |
|
154 |
except Exception as e:
|
155 |
logging.error(f"Error during query processing: {e}")
|
156 |
+
return f"Error during query processing: {str(e)}"
|
157 |
|
158 |
def create_gradio_interface():
|
159 |
with gr.Blocks(title="Document Processing and TTS App") as demo:
|
160 |
gr.Markdown("# π Document Processing, Text & Audio Generation App")
|
161 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
with gr.Tab("π€ Upload Documents"):
|
163 |
+
api_key_input = gr.Textbox(
|
164 |
+
label="Enter OpenAI API Key",
|
165 |
+
placeholder="Paste your OpenAI API Key here",
|
166 |
+
type="password"
|
|
|
|
|
167 |
)
|
168 |
+
file_upload = gr.File(label="Upload Files", file_count="multiple", type="filepath")
|
169 |
+
lang_dropdown = gr.Dropdown(choices=langs, label="Select OCR Language", value='eng')
|
170 |
upload_button = gr.Button("Upload and Index")
|
171 |
upload_status = gr.Textbox(label="Status", interactive=False)
|
172 |
|
|
|
213 |
)
|
214 |
additional_prompt = gr.Textbox(label="Additional Prompt (Optional)")
|
215 |
generate_button = gr.Button("Generate")
|
216 |
+
audio_output = gr.Audio(label="Generated Audio")
|
217 |
+
summary_output = gr.Textbox(label="Generated Summary Text")
|
|
|
|
|
218 |
|
219 |
# Wire up the components
|
220 |
upload_button.click(
|
|
|
226 |
query_button.click(
|
227 |
fn=query_app,
|
228 |
inputs=[query_input, model_dropdown, similarity_checkbox, api_key_input],
|
229 |
+
outputs=[answer_output]
|
230 |
)
|
231 |
|
|
|
|
|
|
|
|
|
|
|
232 |
generate_button.click(
|
233 |
+
fn=generate_audio_and_text,
|
234 |
inputs=[
|
235 |
api_key_input, text_input, model_dropdown, voice_type,
|
236 |
voice_speed, language, output_option, summary_length,
|
|
|
245 |
demo = create_gradio_interface()
|
246 |
demo.launch()
|
247 |
else:
|
248 |
+
demo = create_gradio_interface()/////////////////////////////////////openai_tts_tool.py// from openai import OpenAI
|
249 |
+
import tempfile
|
250 |
+
import os
|
251 |
+
|
252 |
+
def generate_audio_and_text(api_key, input_text, model_name, voice_type, voice_speed, language, output_option, summary_length, additional_prompt):
|
253 |
+
if not input_text:
|
254 |
+
return None, "No input text provided"
|
255 |
+
|
256 |
+
try:
|
257 |
+
client = OpenAI(api_key=api_key)
|
258 |
+
|
259 |
+
# Generate summary if requested
|
260 |
+
summary_text = None
|
261 |
+
if output_option in ["summary_text", "both"]:
|
262 |
+
summary_prompt = f"Summarize the following text in approximately {summary_length} words. {additional_prompt or ''}\n\nText: {input_text}"
|
263 |
+
|
264 |
+
summary_response = client.chat.completions.create(
|
265 |
+
model=model_name,
|
266 |
+
messages=[{"role": "user", "content": summary_prompt}]
|
267 |
+
)
|
268 |
+
summary_text = summary_response.choices[0].message.content
|
269 |
+
|
270 |
+
# Generate audio if requested
|
271 |
+
audio_file = None
|
272 |
+
if output_option in ["audio", "both"]:
|
273 |
+
speech_response = client.audio.speech.create(
|
274 |
+
model="tts-1", # or "tts-1-hd" for higher quality
|
275 |
+
voice=voice_type,
|
276 |
+
input=input_text,
|
277 |
+
speed=float(voice_speed)
|
278 |
+
)
|
279 |
+
|
280 |
+
# Create temp directory if it doesn't exist
|
281 |
+
temp_dir = os.path.join(os.getcwd(), 'temp')
|
282 |
+
if not os.path.exists(temp_dir):
|
283 |
+
os.makedirs(temp_dir)
|
284 |
+
|
285 |
+
# Save the audio to a temporary file
|
286 |
+
audio_path = os.path.join(temp_dir, f"output_{hash(input_text)}.mp3")
|
287 |
+
with open(audio_path, "wb") as f:
|
288 |
+
for chunk in speech_response.iter_bytes():
|
289 |
+
f.write(chunk)
|
290 |
+
|
291 |
+
audio_file = audio_path
|
292 |
+
|
293 |
+
# Return based on output option
|
294 |
+
if output_option == "summary_text":
|
295 |
+
return None, summary_text
|
296 |
+
elif output_option == "audio":
|
297 |
+
return audio_file, None
|
298 |
+
elif output_option == "both":
|
299 |
+
return audio_file, summary_text
|
300 |
+
|
301 |
+
except Exception as e:
|
302 |
+
return None, f"Error: {str(e)}"
|
303 |
+
|
304 |
+
return None, None
|