Spaces:
Sleeping
Sleeping
capradeepgujaran
commited on
Commit
β’
9d47d09
1
Parent(s):
c08083d
Update app.py
Browse files
app.py
CHANGED
@@ -10,23 +10,31 @@ from llama_index.core import VectorStoreIndex, Document
|
|
10 |
from llama_index.embeddings.openai import OpenAIEmbedding
|
11 |
from llama_index.llms.openai import OpenAI
|
12 |
from llama_index.core import get_response_synthesizer
|
13 |
-
from dotenv import load_dotenv
|
14 |
from sentence_transformers import SentenceTransformer, util
|
15 |
import logging
|
16 |
-
from openai_tts_tool import generate_audio_and_text
|
|
|
17 |
|
18 |
# Set up logging configuration
|
19 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s | %(levelname)s | %(message)s')
|
20 |
|
21 |
-
# Load environment variables from .env file
|
22 |
-
load_dotenv()
|
23 |
-
|
24 |
# Initialize global variables
|
25 |
vector_index = None
|
26 |
query_log = []
|
27 |
sentence_model = SentenceTransformer('all-MiniLM-L6-v2')
|
28 |
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
def preprocess_image(image_path):
|
32 |
img = cv2.imread(image_path)
|
@@ -34,18 +42,24 @@ def preprocess_image(image_path):
|
|
34 |
gray = cv2.equalizeHist(gray)
|
35 |
gray = cv2.GaussianBlur(gray, (5, 5), 0)
|
36 |
processed_image = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
37 |
-
|
38 |
-
|
|
|
39 |
cv2.imwrite(temp_filename, processed_image)
|
40 |
return temp_filename
|
41 |
|
42 |
def extract_text_from_image(image_path, lang='eng'):
|
43 |
processed_image_path = preprocess_image(image_path)
|
44 |
text = pytesseract.image_to_string(Image.open(processed_image_path), lang=lang)
|
|
|
|
|
|
|
|
|
45 |
return text
|
46 |
|
47 |
def extract_text_from_pdf(pdf_path, lang='eng'):
|
48 |
text = ""
|
|
|
49 |
try:
|
50 |
with open(pdf_path, 'rb') as file:
|
51 |
pdf_reader = PyPDF2.PdfReader(file)
|
@@ -57,9 +71,14 @@ def extract_text_from_pdf(pdf_path, lang='eng'):
|
|
57 |
else:
|
58 |
images = convert_from_path(pdf_path, first_page=page_num + 1, last_page=page_num + 1)
|
59 |
for image in images:
|
60 |
-
|
61 |
-
|
|
|
62 |
text += f"\n[OCR applied on page {page_num + 1}]\n"
|
|
|
|
|
|
|
|
|
63 |
except Exception as e:
|
64 |
return f"Error processing PDF: {str(e)}"
|
65 |
return text
|
@@ -77,10 +96,10 @@ def process_upload(api_key, files, lang):
|
|
77 |
global vector_index
|
78 |
|
79 |
if not api_key:
|
80 |
-
return "Please provide a valid OpenAI API Key."
|
81 |
|
82 |
if not files:
|
83 |
-
return "No files uploaded."
|
84 |
|
85 |
documents = []
|
86 |
error_messages = []
|
@@ -93,7 +112,7 @@ def process_upload(api_key, files, lang):
|
|
93 |
image_heavy_docs.append(os.path.basename(file_path))
|
94 |
documents.append(Document(text=text))
|
95 |
except Exception as e:
|
96 |
-
error_message = f"Error processing file {file_path}: {str(e)}"
|
97 |
logging.error(error_message)
|
98 |
error_messages.append(error_message)
|
99 |
|
@@ -108,118 +127,122 @@ def process_upload(api_key, files, lang):
|
|
108 |
if error_messages:
|
109 |
success_message += f"\nErrors: {'; '.join(error_messages)}"
|
110 |
|
111 |
-
return success_message
|
112 |
except Exception as e:
|
113 |
-
return f"Error creating index: {str(e)}"
|
114 |
else:
|
115 |
-
return f"No valid documents were indexed. Errors: {'; '.join(error_messages)}"
|
116 |
-
|
117 |
-
def calculate_similarity(response, ground_truth):
|
118 |
-
response_embedding = sentence_model.encode(response, convert_to_tensor=True)
|
119 |
-
truth_embedding = sentence_model.encode(ground_truth, convert_to_tensor=True)
|
120 |
-
|
121 |
-
response_embedding = response_embedding / np.linalg.norm(response_embedding)
|
122 |
-
truth_embedding = truth_embedding / np.linalg.norm(truth_embedding)
|
123 |
-
|
124 |
-
similarity = np.dot(response_embedding, truth_embedding)
|
125 |
-
similarity_percentage = (similarity + 1) / 2 * 100
|
126 |
-
|
127 |
-
return similarity_percentage
|
128 |
|
129 |
-
def query_app(query, model_name, use_similarity_check,
|
130 |
global vector_index, query_log
|
131 |
|
132 |
if vector_index is None:
|
133 |
-
|
134 |
-
return "No documents indexed yet. Please upload documents first.", None
|
135 |
|
136 |
-
if not
|
137 |
-
|
138 |
-
return "Please provide a valid OpenAI API Key.", None
|
139 |
-
|
140 |
-
try:
|
141 |
-
llm = OpenAI(model=model_name, api_key=openai_api_key)
|
142 |
-
except Exception as e:
|
143 |
-
logging.error(f"Error initializing the OpenAI model: {e}")
|
144 |
-
return f"Error initializing the OpenAI model: {e}", None
|
145 |
-
|
146 |
-
response_synthesizer = get_response_synthesizer(llm=llm)
|
147 |
-
query_engine = vector_index.as_query_engine(llm=llm, response_synthesizer=response_synthesizer)
|
148 |
|
149 |
try:
|
|
|
|
|
|
|
150 |
response = query_engine.query(query)
|
|
|
|
|
|
|
|
|
151 |
except Exception as e:
|
152 |
logging.error(f"Error during query processing: {e}")
|
153 |
-
return f"Error during query processing: {e}"
|
154 |
|
155 |
-
|
156 |
-
query_log.append({
|
157 |
-
"query_id": str(len(query_log) + 1),
|
158 |
-
"query": query,
|
159 |
-
"gt_answer": "Placeholder ground truth answer",
|
160 |
-
"response": generated_response,
|
161 |
-
"retrieved_context": [{"text": doc.text} for doc in response.source_nodes]
|
162 |
-
})
|
163 |
-
|
164 |
-
metrics = {}
|
165 |
-
|
166 |
-
if use_similarity_check:
|
167 |
-
try:
|
168 |
-
logging.info("Similarity check is enabled. Calculating similarity.")
|
169 |
-
similarity = calculate_similarity(generated_response, "Placeholder ground truth answer")
|
170 |
-
metrics['similarity'] = similarity
|
171 |
-
logging.info(f"Similarity calculated: {similarity}")
|
172 |
-
except Exception as e:
|
173 |
-
logging.error(f"Error during similarity calculation: {e}")
|
174 |
-
metrics['error'] = f"Error during similarity calculation: {e}"
|
175 |
-
|
176 |
-
if answer_state is None:
|
177 |
-
answer_state = gr.State()
|
178 |
-
|
179 |
-
answer_state.value = generated_response
|
180 |
-
|
181 |
-
return generated_response, metrics if use_similarity_check else None
|
182 |
-
|
183 |
-
def process_tts(api_key, text, model_name, voice_type, voice_speed, language, output_option, summary_length, additional_prompt):
|
184 |
-
return generate_audio_and_text(api_key, text, model_name, voice_type, voice_speed, language, output_option, summary_length, additional_prompt)
|
185 |
-
|
186 |
-
def main():
|
187 |
with gr.Blocks(title="Document Processing and TTS App") as demo:
|
188 |
gr.Markdown("# π Document Processing, Text & Audio Generation App")
|
189 |
-
|
190 |
-
# Upload documents and chat functionality
|
191 |
with gr.Tab("π€ Upload Documents"):
|
192 |
-
api_key_input = gr.Textbox(
|
|
|
|
|
|
|
|
|
193 |
file_upload = gr.File(label="Upload Files", file_count="multiple", type="filepath")
|
194 |
lang_dropdown = gr.Dropdown(choices=langs, label="Select OCR Language", value='eng')
|
195 |
upload_button = gr.Button("Upload and Index")
|
196 |
upload_status = gr.Textbox(label="Status", interactive=False)
|
197 |
-
upload_button.click(fn=process_upload, inputs=[api_key_input, file_upload, lang_dropdown], outputs=[upload_status])
|
198 |
|
199 |
-
answer_state = gr.State() # Initialize answer state here
|
200 |
with gr.Tab("β Ask a Question"):
|
201 |
query_input = gr.Textbox(label="Enter your question")
|
202 |
-
model_dropdown = gr.Dropdown(
|
|
|
|
|
|
|
|
|
203 |
similarity_checkbox = gr.Checkbox(label="Use Similarity Check", value=False)
|
204 |
query_button = gr.Button("Ask")
|
205 |
answer_output = gr.Textbox(label="Answer", interactive=False)
|
206 |
-
metrics_output = gr.JSON(label="Metrics")
|
207 |
-
query_button.click(fn=query_app, inputs=[query_input, model_dropdown, similarity_checkbox, api_key_input, answer_state], outputs=[answer_output, metrics_output])
|
208 |
|
209 |
with gr.Tab("π£οΈ Generate Audio and Text"):
|
210 |
-
text_input = gr.Textbox(label="Enter text for generation"
|
211 |
-
voice_type = gr.Dropdown(
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
additional_prompt = gr.Textbox(label="Additional Prompt (Optional)")
|
217 |
generate_button = gr.Button("Generate")
|
218 |
-
audio_output = gr.Audio(label="Generated Audio"
|
219 |
-
summary_output = gr.Textbox(label="Generated Summary Text"
|
220 |
-
|
221 |
-
|
222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
|
224 |
if __name__ == "__main__":
|
225 |
-
|
|
|
|
|
|
|
|
10 |
from llama_index.embeddings.openai import OpenAIEmbedding
|
11 |
from llama_index.llms.openai import OpenAI
|
12 |
from llama_index.core import get_response_synthesizer
|
|
|
13 |
from sentence_transformers import SentenceTransformer, util
|
14 |
import logging
|
15 |
+
from openai_tts_tool import generate_audio_and_text
|
16 |
+
import tempfile
|
17 |
|
18 |
# Set up logging configuration
|
19 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s | %(levelname)s | %(message)s')
|
20 |
|
|
|
|
|
|
|
21 |
# Initialize global variables
|
22 |
vector_index = None
|
23 |
query_log = []
|
24 |
sentence_model = SentenceTransformer('all-MiniLM-L6-v2')
|
25 |
|
26 |
+
# Get available languages for OCR
|
27 |
+
try:
|
28 |
+
langs = os.popen('tesseract --list-langs').read().split('\n')[1:-1]
|
29 |
+
except:
|
30 |
+
langs = ['eng'] # Fallback to English if tesseract isn't properly configured
|
31 |
+
|
32 |
+
def create_temp_dir():
|
33 |
+
"""Create temporary directory if it doesn't exist"""
|
34 |
+
temp_dir = os.path.join(os.getcwd(), 'temp')
|
35 |
+
if not os.path.exists(temp_dir):
|
36 |
+
os.makedirs(temp_dir)
|
37 |
+
return temp_dir
|
38 |
|
39 |
def preprocess_image(image_path):
|
40 |
img = cv2.imread(image_path)
|
|
|
42 |
gray = cv2.equalizeHist(gray)
|
43 |
gray = cv2.GaussianBlur(gray, (5, 5), 0)
|
44 |
processed_image = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
45 |
+
cv2.THRESH_BINARY, 11, 2)
|
46 |
+
temp_dir = create_temp_dir()
|
47 |
+
temp_filename = os.path.join(temp_dir, "processed_image.png")
|
48 |
cv2.imwrite(temp_filename, processed_image)
|
49 |
return temp_filename
|
50 |
|
51 |
def extract_text_from_image(image_path, lang='eng'):
|
52 |
processed_image_path = preprocess_image(image_path)
|
53 |
text = pytesseract.image_to_string(Image.open(processed_image_path), lang=lang)
|
54 |
+
try:
|
55 |
+
os.remove(processed_image_path)
|
56 |
+
except:
|
57 |
+
pass
|
58 |
return text
|
59 |
|
60 |
def extract_text_from_pdf(pdf_path, lang='eng'):
|
61 |
text = ""
|
62 |
+
temp_dir = create_temp_dir()
|
63 |
try:
|
64 |
with open(pdf_path, 'rb') as file:
|
65 |
pdf_reader = PyPDF2.PdfReader(file)
|
|
|
71 |
else:
|
72 |
images = convert_from_path(pdf_path, first_page=page_num + 1, last_page=page_num + 1)
|
73 |
for image in images:
|
74 |
+
temp_image_path = os.path.join(temp_dir, f'temp_image_{page_num}.png')
|
75 |
+
image.save(temp_image_path, 'PNG')
|
76 |
+
text += extract_text_from_image(temp_image_path, lang=lang)
|
77 |
text += f"\n[OCR applied on page {page_num + 1}]\n"
|
78 |
+
try:
|
79 |
+
os.remove(temp_image_path)
|
80 |
+
except:
|
81 |
+
pass
|
82 |
except Exception as e:
|
83 |
return f"Error processing PDF: {str(e)}"
|
84 |
return text
|
|
|
96 |
global vector_index
|
97 |
|
98 |
if not api_key:
|
99 |
+
return "Please provide a valid OpenAI API Key."
|
100 |
|
101 |
if not files:
|
102 |
+
return "No files uploaded."
|
103 |
|
104 |
documents = []
|
105 |
error_messages = []
|
|
|
112 |
image_heavy_docs.append(os.path.basename(file_path))
|
113 |
documents.append(Document(text=text))
|
114 |
except Exception as e:
|
115 |
+
error_message = f"Error processing file {os.path.basename(file_path)}: {str(e)}"
|
116 |
logging.error(error_message)
|
117 |
error_messages.append(error_message)
|
118 |
|
|
|
127 |
if error_messages:
|
128 |
success_message += f"\nErrors: {'; '.join(error_messages)}"
|
129 |
|
130 |
+
return success_message
|
131 |
except Exception as e:
|
132 |
+
return f"Error creating index: {str(e)}"
|
133 |
else:
|
134 |
+
return f"No valid documents were indexed. Errors: {'; '.join(error_messages)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
+
def query_app(query, model_name, use_similarity_check, api_key):
|
137 |
global vector_index, query_log
|
138 |
|
139 |
if vector_index is None:
|
140 |
+
return "No documents indexed yet. Please upload documents first."
|
|
|
141 |
|
142 |
+
if not api_key:
|
143 |
+
return "Please provide a valid OpenAI API Key."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
try:
|
146 |
+
llm = OpenAI(model=model_name, api_key=api_key)
|
147 |
+
response_synthesizer = get_response_synthesizer(llm=llm)
|
148 |
+
query_engine = vector_index.as_query_engine(llm=llm, response_synthesizer=response_synthesizer)
|
149 |
response = query_engine.query(query)
|
150 |
+
|
151 |
+
generated_response = response.response
|
152 |
+
return generated_response
|
153 |
+
|
154 |
except Exception as e:
|
155 |
logging.error(f"Error during query processing: {e}")
|
156 |
+
return f"Error during query processing: {str(e)}"
|
157 |
|
158 |
+
def create_gradio_interface():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
with gr.Blocks(title="Document Processing and TTS App") as demo:
|
160 |
gr.Markdown("# π Document Processing, Text & Audio Generation App")
|
161 |
+
|
|
|
162 |
with gr.Tab("π€ Upload Documents"):
|
163 |
+
api_key_input = gr.Textbox(
|
164 |
+
label="Enter OpenAI API Key",
|
165 |
+
placeholder="Paste your OpenAI API Key here",
|
166 |
+
type="password"
|
167 |
+
)
|
168 |
file_upload = gr.File(label="Upload Files", file_count="multiple", type="filepath")
|
169 |
lang_dropdown = gr.Dropdown(choices=langs, label="Select OCR Language", value='eng')
|
170 |
upload_button = gr.Button("Upload and Index")
|
171 |
upload_status = gr.Textbox(label="Status", interactive=False)
|
|
|
172 |
|
|
|
173 |
with gr.Tab("β Ask a Question"):
|
174 |
query_input = gr.Textbox(label="Enter your question")
|
175 |
+
model_dropdown = gr.Dropdown(
|
176 |
+
choices=["gpt-4-0125-preview", "gpt-3.5-turbo-0125"],
|
177 |
+
label="Select Model",
|
178 |
+
value="gpt-3.5-turbo-0125"
|
179 |
+
)
|
180 |
similarity_checkbox = gr.Checkbox(label="Use Similarity Check", value=False)
|
181 |
query_button = gr.Button("Ask")
|
182 |
answer_output = gr.Textbox(label="Answer", interactive=False)
|
|
|
|
|
183 |
|
184 |
with gr.Tab("π£οΈ Generate Audio and Text"):
|
185 |
+
text_input = gr.Textbox(label="Enter text for generation")
|
186 |
+
voice_type = gr.Dropdown(
|
187 |
+
choices=["alloy", "echo", "fable", "onyx", "nova", "shimmer"],
|
188 |
+
label="Voice Type",
|
189 |
+
value="alloy"
|
190 |
+
)
|
191 |
+
voice_speed = gr.Slider(
|
192 |
+
minimum=0.25,
|
193 |
+
maximum=4.0,
|
194 |
+
value=1.0,
|
195 |
+
label="Voice Speed"
|
196 |
+
)
|
197 |
+
language = gr.Dropdown(
|
198 |
+
choices=["en", "ar", "de", "hi", "es", "fr", "it", "ja", "ko", "pt"],
|
199 |
+
label="Language",
|
200 |
+
value="en"
|
201 |
+
)
|
202 |
+
output_option = gr.Radio(
|
203 |
+
choices=["audio", "summary_text", "both"],
|
204 |
+
label="Output Option",
|
205 |
+
value="both"
|
206 |
+
)
|
207 |
+
summary_length = gr.Slider(
|
208 |
+
minimum=50,
|
209 |
+
maximum=500,
|
210 |
+
value=100,
|
211 |
+
step=10,
|
212 |
+
label="Summary Length (words)"
|
213 |
+
)
|
214 |
additional_prompt = gr.Textbox(label="Additional Prompt (Optional)")
|
215 |
generate_button = gr.Button("Generate")
|
216 |
+
audio_output = gr.Audio(label="Generated Audio")
|
217 |
+
summary_output = gr.Textbox(label="Generated Summary Text")
|
218 |
+
|
219 |
+
# Wire up the components
|
220 |
+
upload_button.click(
|
221 |
+
fn=process_upload,
|
222 |
+
inputs=[api_key_input, file_upload, lang_dropdown],
|
223 |
+
outputs=[upload_status]
|
224 |
+
)
|
225 |
+
|
226 |
+
query_button.click(
|
227 |
+
fn=query_app,
|
228 |
+
inputs=[query_input, model_dropdown, similarity_checkbox, api_key_input],
|
229 |
+
outputs=[answer_output]
|
230 |
+
)
|
231 |
+
|
232 |
+
generate_button.click(
|
233 |
+
fn=generate_audio_and_text,
|
234 |
+
inputs=[
|
235 |
+
api_key_input, text_input, model_dropdown, voice_type,
|
236 |
+
voice_speed, language, output_option, summary_length,
|
237 |
+
additional_prompt
|
238 |
+
],
|
239 |
+
outputs=[audio_output, summary_output]
|
240 |
+
)
|
241 |
+
|
242 |
+
return demo
|
243 |
|
244 |
if __name__ == "__main__":
|
245 |
+
demo = create_gradio_interface()
|
246 |
+
demo.launch()
|
247 |
+
else:
|
248 |
+
demo = create_gradio_interface()
|