capradeepgujaran commited on
Commit
503a035
β€’
1 Parent(s): 5fad48b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +151 -22
app.py CHANGED
@@ -25,31 +25,157 @@ sentence_model = SentenceTransformer('all-MiniLM-L6-v2')
25
 
26
  # Define available languages for TTS
27
  AVAILABLE_LANGUAGES = [
28
- ("en", "English"),
29
- ("ar", "Arabic"),
30
- ("de", "German"),
31
- ("mr", "Marathi"),
32
- ("kn", "Kannada"),
33
- ("tl", "Filipino (Tagalog)"),
34
- ("fr", "French"),
35
- ("gu", "Gujarati"),
36
- ("hi", "Hindi"),
37
- ("ml", "Malayalam"),
38
- ("ta", "Tamil"),
39
- ("te", "Telugu"),
40
- ("ur", "Urdu"),
41
- ("si", "Sinhala")
42
  ]
43
 
 
 
 
 
 
 
 
 
44
  # Get available languages for OCR
45
  try:
46
  langs = os.popen('tesseract --list-langs').read().split('\n')[1:-1]
47
  except:
48
  langs = ['eng'] # Fallback to English if tesseract isn't properly configured
49
 
50
- # ... (keep all the existing functions until create_gradio_interface unchanged) ...
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
  def create_gradio_interface():
 
53
  with gr.Blocks(title="Document Processing and TTS App") as demo:
54
  gr.Markdown("# πŸ“„ Document Processing, Text & Audio Generation App")
55
 
@@ -89,10 +215,9 @@ def create_gradio_interface():
89
  label="Voice Speed"
90
  )
91
  language = gr.Dropdown(
92
- choices=[(code, name) for code, name in AVAILABLE_LANGUAGES],
93
  label="Language for Audio and Script",
94
- value="en",
95
- type="value"
96
  )
97
  output_option = gr.Radio(
98
  choices=["audio", "script_text", "both"],
@@ -122,9 +247,15 @@ def create_gradio_interface():
122
  inputs=[answer_output],
123
  outputs=[text_input]
124
  )
 
 
 
 
 
 
125
 
126
  generate_button.click(
127
- fn=generate_audio_and_text,
128
  inputs=[
129
  api_key_input, text_input, model_dropdown, voice_type,
130
  voice_speed, language, output_option
@@ -136,6 +267,4 @@ def create_gradio_interface():
136
 
137
  if __name__ == "__main__":
138
  demo = create_gradio_interface()
139
- demo.launch()
140
- else:
141
- demo = create_gradio_interface()
 
25
 
26
  # Define available languages for TTS
27
  AVAILABLE_LANGUAGES = [
28
+ "English", "Arabic", "German", "Marathi", "Kannada",
29
+ "Filipino (Tagalog)", "French", "Gujarati", "Hindi",
30
+ "Malayalam", "Tamil", "Telugu", "Urdu", "Sinhala"
 
 
 
 
 
 
 
 
 
 
 
31
  ]
32
 
33
+ LANGUAGE_CODES = {
34
+ "English": "en", "Arabic": "ar", "German": "de",
35
+ "Marathi": "mr", "Kannada": "kn", "Filipino (Tagalog)": "tl",
36
+ "French": "fr", "Gujarati": "gu", "Hindi": "hi",
37
+ "Malayalam": "ml", "Tamil": "ta", "Telugu": "te",
38
+ "Urdu": "ur", "Sinhala": "si"
39
+ }
40
+
41
  # Get available languages for OCR
42
  try:
43
  langs = os.popen('tesseract --list-langs').read().split('\n')[1:-1]
44
  except:
45
  langs = ['eng'] # Fallback to English if tesseract isn't properly configured
46
 
47
+ def create_temp_dir():
48
+ """Create temporary directory if it doesn't exist"""
49
+ temp_dir = os.path.join(os.getcwd(), 'temp')
50
+ if not os.path.exists(temp_dir):
51
+ os.makedirs(temp_dir)
52
+ return temp_dir
53
+
54
+ def preprocess_image(image_path):
55
+ """Preprocess the image for better OCR results"""
56
+ img = cv2.imread(image_path)
57
+ gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
58
+ gray = cv2.equalizeHist(gray)
59
+ gray = cv2.GaussianBlur(gray, (5, 5), 0)
60
+ processed_image = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
61
+ cv2.THRESH_BINARY, 11, 2)
62
+ temp_dir = create_temp_dir()
63
+ temp_filename = os.path.join(temp_dir, "processed_image.png")
64
+ cv2.imwrite(temp_filename, processed_image)
65
+ return temp_filename
66
+
67
+ def extract_text_from_image(image_path, lang='eng'):
68
+ """Extract text from image using OCR"""
69
+ processed_image_path = preprocess_image(image_path)
70
+ text = pytesseract.image_to_string(Image.open(processed_image_path), lang=lang)
71
+ try:
72
+ os.remove(processed_image_path)
73
+ except:
74
+ pass
75
+ return text
76
+
77
+ def extract_text_from_pdf(pdf_path, lang='eng'):
78
+ """Extract text from PDF file"""
79
+ text = ""
80
+ temp_dir = create_temp_dir()
81
+ try:
82
+ with open(pdf_path, 'rb') as file:
83
+ pdf_reader = PyPDF2.PdfReader(file)
84
+ for page_num in range(len(pdf_reader.pages)):
85
+ page = pdf_reader.pages[page_num]
86
+ page_text = page.extract_text()
87
+ if page_text.strip():
88
+ text += page_text
89
+ else:
90
+ images = convert_from_path(pdf_path, first_page=page_num + 1, last_page=page_num + 1)
91
+ for image in images:
92
+ temp_image_path = os.path.join(temp_dir, f'temp_image_{page_num}.png')
93
+ image.save(temp_image_path, 'PNG')
94
+ text += extract_text_from_image(temp_image_path, lang=lang)
95
+ text += f"\n[OCR applied on page {page_num + 1}]\n"
96
+ try:
97
+ os.remove(temp_image_path)
98
+ except:
99
+ pass
100
+ except Exception as e:
101
+ return f"Error processing PDF: {str(e)}"
102
+ return text
103
+
104
+ def extract_text(file_path, lang='eng'):
105
+ """Extract text from uploaded file"""
106
+ file_ext = file_path.lower().split('.')[-1]
107
+ if file_ext in ['pdf']:
108
+ return extract_text_from_pdf(file_path, lang)
109
+ elif file_ext in ['png', 'jpg', 'jpeg']:
110
+ return extract_text_from_image(file_path, lang)
111
+ else:
112
+ return f"Unsupported file type: {file_ext}"
113
+
114
+ def process_upload(api_key, files, lang):
115
+ """Process uploaded files and create vector index"""
116
+ global vector_index
117
+
118
+ if not api_key:
119
+ return "Please provide a valid OpenAI API Key."
120
+
121
+ if not files:
122
+ return "No files uploaded."
123
+
124
+ documents = []
125
+ error_messages = []
126
+ image_heavy_docs = []
127
+
128
+ for file_path in files:
129
+ try:
130
+ text = extract_text(file_path, lang)
131
+ if text.strip(): # Only add non-empty documents
132
+ documents.append(Document(text=text))
133
+ else:
134
+ error_messages.append(f"No text extracted from {os.path.basename(file_path)}")
135
+ except Exception as e:
136
+ error_message = f"Error processing file {os.path.basename(file_path)}: {str(e)}"
137
+ logging.error(error_message)
138
+ error_messages.append(error_message)
139
+
140
+ if documents:
141
+ try:
142
+ embed_model = OpenAIEmbedding(model="text-embedding-3-large", api_key=api_key)
143
+ vector_index = VectorStoreIndex.from_documents(documents, embed_model=embed_model)
144
+
145
+ success_message = f"Successfully indexed {len(documents)} files."
146
+ if error_messages:
147
+ success_message += f"\nErrors: {'; '.join(error_messages)}"
148
+
149
+ return success_message
150
+ except Exception as e:
151
+ return f"Error creating index: {str(e)}"
152
+ else:
153
+ return f"No valid documents were indexed. Errors: {'; '.join(error_messages)}"
154
+
155
+ def query_app(query, model_name, use_similarity_check, api_key):
156
+ """Process query and return response"""
157
+ global vector_index, query_log
158
+
159
+ if vector_index is None:
160
+ return "No documents indexed yet. Please upload documents first."
161
+
162
+ if not api_key:
163
+ return "Please provide a valid OpenAI API Key."
164
+
165
+ try:
166
+ llm = OpenAI(model=model_name, api_key=api_key)
167
+ response_synthesizer = get_response_synthesizer(llm=llm)
168
+ query_engine = vector_index.as_query_engine(llm=llm, response_synthesizer=response_synthesizer)
169
+ response = query_engine.query(query)
170
+
171
+ return response.response
172
+
173
+ except Exception as e:
174
+ logging.error(f"Error during query processing: {e}")
175
+ return f"Error during query processing: {str(e)}"
176
 
177
  def create_gradio_interface():
178
+ """Create and configure the Gradio interface"""
179
  with gr.Blocks(title="Document Processing and TTS App") as demo:
180
  gr.Markdown("# πŸ“„ Document Processing, Text & Audio Generation App")
181
 
 
215
  label="Voice Speed"
216
  )
217
  language = gr.Dropdown(
218
+ choices=AVAILABLE_LANGUAGES,
219
  label="Language for Audio and Script",
220
+ value="English"
 
221
  )
222
  output_option = gr.Radio(
223
  choices=["audio", "script_text", "both"],
 
247
  inputs=[answer_output],
248
  outputs=[text_input]
249
  )
250
+
251
+ def process_generation(*args):
252
+ args = list(args)
253
+ # Convert language name to code
254
+ args[5] = LANGUAGE_CODES[args[5]]
255
+ return generate_audio_and_text(*args)
256
 
257
  generate_button.click(
258
+ fn=process_generation,
259
  inputs=[
260
  api_key_input, text_input, model_dropdown, voice_type,
261
  voice_speed, language, output_option
 
267
 
268
  if __name__ == "__main__":
269
  demo = create_gradio_interface()
270
+ demo.launch()