File size: 1,731 Bytes
b1fd6cc 52abee0 f660379 6205fd1 b1fd6cc ae30d65 f660379 6205fd1 52abee0 6205fd1 52abee0 6205fd1 f660379 6205fd1 f660379 52abee0 f660379 6205fd1 f660379 52abee0 f660379 52abee0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
import gradio as gr
import os
import torch
from transformers import AutoProcessor, MllamaForConditionalGeneration
from PIL import Image
# Hugging Face tokeninizi çevresel değişkenden alın
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
raise ValueError("HF_TOKEN çevresel değişkeni ayarlanmamış. Lütfen Hugging Face token'ınızı ayarlayın.")
# Model ve işlemciyi yükleyin
model_name = "meta-llama/Llama-3.2-90B-Vision-Instruct"
model = MllamaForConditionalGeneration.from_pretrained(
model_name,
use_auth_token=hf_token,
torch_dtype=torch.bfloat16,
device_map="auto",
)
processor = AutoProcessor.from_pretrained(model_name, use_auth_token=hf_token)
def predict(image, text):
# Mesajları hazırlayın
messages = [
{"role": "user", "content": [
{"type": "image"},
{"type": "text", "text": text}
]}
]
# Girdi metnini oluşturun
input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
# Girdileri işleyin ve cihaza taşıyın
inputs = processor(image, input_text, return_tensors="pt").to(model.device)
# Modelden yanıt alın
outputs = model.generate(**inputs, max_new_tokens=100)
# Çıktıyı çözümleyin
response = processor.decode(outputs[0], skip_special_tokens=True)
return response
# Gradio arayüzünü tanımlayın
interface = gr.Interface(
fn=predict,
inputs=[
gr.Image(type="pil", label="Görüntü Girdisi"),
gr.Textbox(label="Metin Girdisi")
],
outputs=gr.Textbox(label="Çıktı"),
title="Llama 3.2 90B Vision Instruct Demo",
description="Bir görüntü ve metin girdisi alarak yanıt üreten model."
)
interface.launch()
|