|
""" from https://github.com/keithito/tacotron """ |
|
|
|
''' |
|
Cleaners are transformations that run over the input text at both training and eval time. |
|
|
|
Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners" |
|
hyperparameter. Some cleaners are English-specific. You'll typically want to use: |
|
1. "english_cleaners" for English text |
|
2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using |
|
the Unidecode library (https://pypi.python.org/pypi/Unidecode) |
|
3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update |
|
the symbols in symbols.py to match your data). |
|
''' |
|
|
|
import re |
|
from unidecode import unidecode |
|
from phonemizer import phonemize |
|
from pypinyin import pinyin, lazy_pinyin, load_phrases_dict, Style, load_single_dict |
|
from pypinyin.style._utils import get_finals, get_initials |
|
from pypinyin_dict.phrase_pinyin_data import cc_cedict |
|
from pypinyin_dict.pinyin_data import kmandarin_8105 |
|
import jieba |
|
kmandarin_8105.load() |
|
cc_cedict.load() |
|
PHRASE_LIST = [ |
|
"琴", "安柏", "丽莎", "凯亚", "芭芭拉", "迪卢克", "雷泽", "温迪", "可莉", "班尼特", "诺艾尔", "菲谢尔", |
|
"砂糖", "莫娜", "迪奥娜", "阿贝多", "罗莎莉亚", "优菈", "魈", "北斗", "凝光", "香菱", "行秋", "重云", |
|
"七七", "刻晴", "达达利亚", "钟离", "辛焱", "甘雨", "胡桃", "烟绯", "申鹤", "云堇", "夜兰", "神里绫华", |
|
"神里", "绫华", "枫原万叶", "枫原", "万叶", "宵宫", "早柚", "雷电将军", "九条裟罗", "九条", "裟罗", "珊瑚宫心海", |
|
"珊瑚宫", "心海", "托马", "荒泷", "一斗", "荒泷派", "五郎", "八重神子", "神子", "神里绫人", "绫人", |
|
"久岐忍", "鹿野院平藏", "平藏", "蒙德", "璃月", "稻妻", "北风的王狼", "风魔龙", "特瓦林", "若陀龙王", "龙脊雪山", |
|
"金苹果群岛", "渊下宫", "层岩巨渊", "奥赛尔", "七天神像", "钩钩果", "落落莓", "塞西莉亚花", "风车菊", "尘歌壶", |
|
"提瓦特", "明冠山地", "风龙废墟", "明冠峡", "坠星山谷", "果酒湖", "望风山地", "坎瑞亚", "须弥", "枫丹", "纳塔", |
|
"至冬", "丘丘人", "丘丘暴徒", "深渊法师", "深渊咏者", "盗宝团", "愚人众", "深渊教团", "骗骗花", "急冻树", "龙蜥", |
|
"鸣神岛", "神无冢", "八酝岛", "海祇岛", "清籁岛", "鹤观", "绝云间", "群玉阁", "南十字", "死兆星", "木漏茶室", "神樱", |
|
"鸣神大社", "天使的馈赠", "社奉行", "勘定奉行", "天领奉行", "夜叉", "风神", "岩神", "雷神", "风之神", "岩之神", "雷之神", |
|
"风神瞳", "岩神瞳", "雷神瞳", "摩拉克斯", "契约之神", "雷电影", "雷电真", "八重宫司", "宫司大人", "巴巴托斯", "玉衡星", |
|
"天权星", "璃月七星", "留云借风", "削月筑阳", "理水叠山", "请仙典仪" |
|
] |
|
|
|
for phrase in PHRASE_LIST: |
|
jieba.add_word(phrase) |
|
|
|
load_phrases_dict({"若陀": [["rě"], ["tuó"]], "平藏": [["píng"], ["zàng"]], |
|
"派蒙": [["pài"], ["méng"]], "安柏": [["ān"], ["bó"]], |
|
"一斗": [["yī"], ["dǒu"]] |
|
}) |
|
|
|
|
|
_whitespace_re = re.compile(r'\s+') |
|
|
|
|
|
_abbreviations = [(re.compile('\\b%s\\.' % x[0], re.IGNORECASE), x[1]) for x in [ |
|
('mrs', 'misess'), |
|
('mr', 'mister'), |
|
('dr', 'doctor'), |
|
('st', 'saint'), |
|
('co', 'company'), |
|
('jr', 'junior'), |
|
('maj', 'major'), |
|
('gen', 'general'), |
|
('drs', 'doctors'), |
|
('rev', 'reverend'), |
|
('lt', 'lieutenant'), |
|
('hon', 'honorable'), |
|
('sgt', 'sergeant'), |
|
('capt', 'captain'), |
|
('esq', 'esquire'), |
|
('ltd', 'limited'), |
|
('col', 'colonel'), |
|
('ft', 'fort'), |
|
]] |
|
|
|
|
|
def expand_abbreviations(text): |
|
for regex, replacement in _abbreviations: |
|
text = re.sub(regex, replacement, text) |
|
return text |
|
|
|
|
|
def expand_numbers(text): |
|
return normalize_numbers(text) |
|
|
|
|
|
def lowercase(text): |
|
return text.lower() |
|
|
|
|
|
def collapse_whitespace(text): |
|
return re.sub(_whitespace_re, ' ', text) |
|
|
|
|
|
def convert_to_ascii(text): |
|
return unidecode(text) |
|
|
|
def chinese_cleaners(text): |
|
return " ".join(lazy_pinyin(jieba.cut(text), style=Style.TONE3, errors='ignore')) |
|
|
|
def chinese_cleaners2(text): |
|
return " ".join([ |
|
p |
|
for phone in pinyin(text, style=Style.TONE3, v_to_u=True) |
|
for p in [ |
|
get_initials(phone[0], strict=True), |
|
get_finals(phone[0][:-1], strict=True) + phone[0][-1] |
|
if phone[0][-1].isdigit() |
|
else get_finals(phone[0], strict=True) |
|
if phone[0][-1].isalnum() |
|
else phone[0], |
|
] |
|
if len(p) != 0 and not p.isdigit() |
|
]) |
|
|
|
def basic_cleaners(text): |
|
'''Basic pipeline that lowercases and collapses whitespace without transliteration.''' |
|
text = lowercase(text) |
|
text = collapse_whitespace(text) |
|
return text |
|
|
|
|
|
def transliteration_cleaners(text): |
|
'''Pipeline for non-English text that transliterates to ASCII.''' |
|
text = convert_to_ascii(text) |
|
text = lowercase(text) |
|
text = collapse_whitespace(text) |
|
return text |
|
|
|
|
|
def english_cleaners(text): |
|
'''Pipeline for English text, including abbreviation expansion.''' |
|
text = convert_to_ascii(text) |
|
text = lowercase(text) |
|
text = expand_abbreviations(text) |
|
phonemes = phonemize(text, language='en-us', backend='espeak', strip=True) |
|
phonemes = collapse_whitespace(phonemes) |
|
return phonemes |
|
|
|
|
|
def english_cleaners2(text): |
|
'''Pipeline for English text, including abbreviation expansion. + punctuation + stress''' |
|
text = convert_to_ascii(text) |
|
text = lowercase(text) |
|
text = expand_abbreviations(text) |
|
phonemes = phonemize(text, language='en-us', backend='espeak', strip=True, preserve_punctuation=True, with_stress=True) |
|
phonemes = collapse_whitespace(phonemes) |
|
return phonemes |
|
|