Spaces:
Running
Running
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import math | |
from typing import Any, List, Tuple, Type | |
import torch | |
import torch.nn.functional as F | |
from torch import nn, Tensor | |
from .efficient_sam_decoder import MaskDecoder, PromptEncoder | |
from .efficient_sam_encoder import ImageEncoderViT | |
from .two_way_transformer import TwoWayAttentionBlock, TwoWayTransformer | |
class EfficientSam(nn.Module): | |
mask_threshold: float = 0.0 | |
image_format: str = "RGB" | |
def __init__( | |
self, | |
image_encoder: ImageEncoderViT, | |
prompt_encoder: PromptEncoder, | |
decoder_max_num_input_points: int, | |
mask_decoder: MaskDecoder, | |
pixel_mean: List[float] = [0.485, 0.456, 0.406], | |
pixel_std: List[float] = [0.229, 0.224, 0.225], | |
) -> None: | |
""" | |
SAM predicts object masks from an image and input prompts. | |
Arguments: | |
image_encoder (ImageEncoderViT): The backbone used to encode the | |
image into image embeddings that allow for efficient mask prediction. | |
prompt_encoder (PromptEncoder): Encodes various types of input prompts. | |
mask_decoder (MaskDecoder): Predicts masks from the image embeddings | |
and encoded prompts. | |
pixel_mean (list(float)): Mean values for normalizing pixels in the input image. | |
pixel_std (list(float)): Std values for normalizing pixels in the input image. | |
""" | |
super().__init__() | |
self.image_encoder = image_encoder | |
self.prompt_encoder = prompt_encoder | |
self.decoder_max_num_input_points = decoder_max_num_input_points | |
self.mask_decoder = mask_decoder | |
self.register_buffer( | |
"pixel_mean", torch.Tensor(pixel_mean).view(1, 3, 1, 1), False | |
) | |
self.register_buffer( | |
"pixel_std", torch.Tensor(pixel_std).view(1, 3, 1, 1), False | |
) | |
def predict_masks( | |
self, | |
image_embeddings: torch.Tensor, | |
batched_points: torch.Tensor, | |
batched_point_labels: torch.Tensor, | |
multimask_output: bool, | |
input_h: int, | |
input_w: int, | |
output_h: int = -1, | |
output_w: int = -1, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Predicts masks given image embeddings and prompts. This only runs the decoder. | |
Arguments: | |
image_embeddings: A tensor of shape [B, C, H, W] or [B*max_num_queries, C, H, W] | |
batched_points: A tensor of shape [B, max_num_queries, num_pts, 2] | |
batched_point_labels: A tensor of shape [B, max_num_queries, num_pts] | |
Returns: | |
A tuple of two tensors: | |
low_res_mask: A tensor of shape [B, max_num_queries, 256, 256] of predicted masks | |
iou_predictions: A tensor of shape [B, max_num_queries] of estimated IOU scores | |
""" | |
batch_size, max_num_queries, num_pts, _ = batched_points.shape | |
num_pts = batched_points.shape[2] | |
rescaled_batched_points = self.get_rescaled_pts(batched_points, input_h, input_w) | |
if num_pts > self.decoder_max_num_input_points: | |
rescaled_batched_points = rescaled_batched_points[ | |
:, :, : self.decoder_max_num_input_points, : | |
] | |
batched_point_labels = batched_point_labels[ | |
:, :, : self.decoder_max_num_input_points | |
] | |
elif num_pts < self.decoder_max_num_input_points: | |
rescaled_batched_points = F.pad( | |
rescaled_batched_points, | |
(0, 0, 0, self.decoder_max_num_input_points - num_pts), | |
value=-1.0, | |
) | |
batched_point_labels = F.pad( | |
batched_point_labels, | |
(0, self.decoder_max_num_input_points - num_pts), | |
value=-1.0, | |
) | |
sparse_embeddings = self.prompt_encoder( | |
rescaled_batched_points.reshape( | |
batch_size * max_num_queries, self.decoder_max_num_input_points, 2 | |
), | |
batched_point_labels.reshape( | |
batch_size * max_num_queries, self.decoder_max_num_input_points | |
), | |
) | |
sparse_embeddings = sparse_embeddings.view( | |
batch_size, | |
max_num_queries, | |
sparse_embeddings.shape[1], | |
sparse_embeddings.shape[2], | |
) | |
low_res_masks, iou_predictions = self.mask_decoder( | |
image_embeddings, | |
self.prompt_encoder.get_dense_pe(), | |
sparse_prompt_embeddings=sparse_embeddings, | |
multimask_output=multimask_output, | |
) | |
_, num_predictions, low_res_size, _ = low_res_masks.shape | |
if output_w > 0 and output_h > 0: | |
output_masks = F.interpolate( | |
low_res_masks, (output_h, output_w), mode="bicubic" | |
) | |
output_masks = torch.reshape( | |
output_masks, | |
(batch_size, max_num_queries, num_predictions, output_h, output_w), | |
) | |
else: | |
output_masks = torch.reshape( | |
low_res_masks, | |
( | |
batch_size, | |
max_num_queries, | |
num_predictions, | |
low_res_size, | |
low_res_size, | |
), | |
) | |
iou_predictions = torch.reshape( | |
iou_predictions, (batch_size, max_num_queries, num_predictions) | |
) | |
sorted_ids = torch.argsort(iou_predictions, dim=-1, descending=True) | |
iou_predictions = torch.take_along_dim(iou_predictions, sorted_ids, dim=2) | |
output_masks = torch.take_along_dim( | |
output_masks, sorted_ids[..., None, None], dim=2 | |
) | |
return output_masks, iou_predictions | |
def get_rescaled_pts(self, batched_points: torch.Tensor, input_h: int, input_w: int): | |
return torch.stack( | |
[ | |
torch.where( | |
batched_points[..., 0] >= 0, | |
batched_points[..., 0] * self.image_encoder.img_size / input_w, | |
-1.0, | |
), | |
torch.where( | |
batched_points[..., 1] >= 0, | |
batched_points[..., 1] * self.image_encoder.img_size / input_h, | |
-1.0, | |
), | |
], | |
dim=-1, | |
) | |
def get_image_embeddings(self, batched_images) -> torch.Tensor: | |
""" | |
Predicts masks end-to-end from provided images and prompts. | |
If prompts are not known in advance, using SamPredictor is | |
recommended over calling the model directly. | |
Arguments: | |
batched_images: A tensor of shape [B, 3, H, W] | |
Returns: | |
List of image embeddings each of of shape [B, C(i), H(i), W(i)]. | |
The last embedding corresponds to the final layer. | |
""" | |
batched_images = self.preprocess(batched_images) | |
return self.image_encoder(batched_images) | |
def forward( | |
self, | |
batched_images: torch.Tensor, | |
batched_points: torch.Tensor, | |
batched_point_labels: torch.Tensor, | |
scale_to_original_image_size: bool = True, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Predicts masks end-to-end from provided images and prompts. | |
If prompts are not known in advance, using SamPredictor is | |
recommended over calling the model directly. | |
Arguments: | |
batched_images: A tensor of shape [B, 3, H, W] | |
batched_points: A tensor of shape [B, num_queries, max_num_pts, 2] | |
batched_point_labels: A tensor of shape [B, num_queries, max_num_pts] | |
Returns: | |
A list tuples of two tensors where the ith element is by considering the first i+1 points. | |
low_res_mask: A tensor of shape [B, 256, 256] of predicted masks | |
iou_predictions: A tensor of shape [B, max_num_queries] of estimated IOU scores | |
""" | |
batch_size, _, input_h, input_w = batched_images.shape | |
image_embeddings = self.get_image_embeddings(batched_images) | |
return self.predict_masks( | |
image_embeddings, | |
batched_points, | |
batched_point_labels, | |
multimask_output=True, | |
input_h=input_h, | |
input_w=input_w, | |
output_h=input_h if scale_to_original_image_size else -1, | |
output_w=input_w if scale_to_original_image_size else -1, | |
) | |
def preprocess(self, x: torch.Tensor) -> torch.Tensor: | |
"""Normalize pixel values and pad to a square input.""" | |
if ( | |
x.shape[2] != self.image_encoder.img_size | |
or x.shape[3] != self.image_encoder.img_size | |
): | |
x = F.interpolate( | |
x, | |
(self.image_encoder.img_size, self.image_encoder.img_size), | |
mode="bilinear", | |
) | |
return (x - self.pixel_mean) / self.pixel_std | |
def build_efficient_sam(encoder_patch_embed_dim, encoder_num_heads, checkpoint=None): | |
img_size = 1024 | |
encoder_patch_size = 16 | |
encoder_depth = 12 | |
encoder_mlp_ratio = 4.0 | |
encoder_neck_dims = [256, 256] | |
decoder_max_num_input_points = 6 | |
decoder_transformer_depth = 2 | |
decoder_transformer_mlp_dim = 2048 | |
decoder_num_heads = 8 | |
decoder_upscaling_layer_dims = [64, 32] | |
num_multimask_outputs = 3 | |
iou_head_depth = 3 | |
iou_head_hidden_dim = 256 | |
activation = "gelu" | |
normalization_type = "layer_norm" | |
normalize_before_activation = False | |
assert activation == "relu" or activation == "gelu" | |
if activation == "relu": | |
activation_fn = nn.ReLU | |
else: | |
activation_fn = nn.GELU | |
image_encoder = ImageEncoderViT( | |
img_size=img_size, | |
patch_size=encoder_patch_size, | |
in_chans=3, | |
patch_embed_dim=encoder_patch_embed_dim, | |
normalization_type=normalization_type, | |
depth=encoder_depth, | |
num_heads=encoder_num_heads, | |
mlp_ratio=encoder_mlp_ratio, | |
neck_dims=encoder_neck_dims, | |
act_layer=activation_fn, | |
) | |
image_embedding_size = image_encoder.image_embedding_size | |
encoder_transformer_output_dim = image_encoder.transformer_output_dim | |
sam = EfficientSam( | |
image_encoder=image_encoder, | |
prompt_encoder=PromptEncoder( | |
embed_dim=encoder_transformer_output_dim, | |
image_embedding_size=(image_embedding_size, image_embedding_size), | |
input_image_size=(img_size, img_size), | |
), | |
decoder_max_num_input_points=decoder_max_num_input_points, | |
mask_decoder=MaskDecoder( | |
transformer_dim=encoder_transformer_output_dim, | |
transformer=TwoWayTransformer( | |
depth=decoder_transformer_depth, | |
embedding_dim=encoder_transformer_output_dim, | |
num_heads=decoder_num_heads, | |
mlp_dim=decoder_transformer_mlp_dim, | |
activation=activation_fn, | |
normalize_before_activation=normalize_before_activation, | |
), | |
num_multimask_outputs=num_multimask_outputs, | |
activation=activation_fn, | |
normalization_type=normalization_type, | |
normalize_before_activation=normalize_before_activation, | |
iou_head_depth=iou_head_depth - 1, | |
iou_head_hidden_dim=iou_head_hidden_dim, | |
upscaling_layer_dims=decoder_upscaling_layer_dims, | |
), | |
pixel_mean=[0.485, 0.456, 0.406], | |
pixel_std=[0.229, 0.224, 0.225], | |
) | |
if checkpoint is not None: | |
with open(checkpoint, "rb") as f: | |
state_dict = torch.load(f, map_location="cpu") | |
sam.load_state_dict(state_dict["model"]) | |
return sam | |