Spaces:
Running
Running
File size: 24,133 Bytes
37ee4a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 |
import numpy as np
import torch
from diffusers import DDIMScheduler
import cv2
from utils.sdxl import sdxl
from utils.inversion import Inversion
import math
import torch.nn.functional as F
import utils.utils as utils
import os
import matplotlib.pyplot as plt
from PIL import Image, ImageDraw, ImageFont
import spaces
MAX_NUM_WORDS = 77
class LayerFusion:
def get_mask(self, maps, alpha, use_pool,x_t):
k = 1
maps = (maps * alpha).sum(-1).mean(1)
if use_pool:
maps = F.max_pool2d(maps, (k * 2 + 1, k * 2 + 1), (1, 1), padding=(k, k))
mask = F.interpolate(maps, size=(x_t.shape[2:])) #[2, 1, 128, 128]
mask = mask / mask.max(2, keepdims=True)[0].max(3, keepdims=True)[0]
mask=(mask - mask.min ()) / (mask.max () - mask.min ())
mask = mask.gt(self.mask_threshold)
self.mask=mask
mask = mask[:1] + mask
return mask
def get_one_mask(self, maps, use_pool, x_t, idx_lst, i=None, sav_img=False):
k=1
if sav_img is False:
mask_tot = 0
for obj in idx_lst:
mask = maps[0, :, :, :, obj].mean(0).reshape(1, 1, 32, 32)
if use_pool:
mask = F.max_pool2d(mask, (k * 2 + 1, k * 2 + 1), (1, 1), padding=(k, k))
mask = F.interpolate(mask, size=(x_t.shape[2:]))
mask = mask / mask.max(2, keepdims=True)[0].max(3, keepdims=True)[0]
mask=(mask - mask.min ()) / (mask.max () - mask.min ())
mask = mask.gt(self.mask_threshold[int(self.counter/10)])
mask_tot |= mask
mask = mask_tot
return mask
else:
for obj in idx_lst:
mask = maps[0, :, :, :, obj].mean(0).reshape(1, 1, 32, 32)
if use_pool:
mask = F.max_pool2d(mask, (k * 2 + 1, k * 2 + 1), (1, 1), padding=(k, k))
mask = F.interpolate(mask, size=(1024, 1024))#[1, 1, 1024, 1024]
mask = mask / mask.max(2, keepdims=True)[0].max(3, keepdims=True)[0]
mask=(mask - mask.min ()) / (mask.max () - mask.min ())
mask = mask.gt(0.6)
mask = np.array(mask[0][0].clone().cpu()).astype(np.uint8)*255
cv2.imwrite(f'./img/sam_mask/{self.blend_list[i][0]}_{self.counter}.jpg', mask)
return mask
def mv_op(self, mp, op, scale=0.2, ones=False, flip=None):
_, b, H, W = mp.shape
if ones == False:
new_mp = torch.zeros_like(mp)
else:
new_mp = torch.ones_like(mp)
K = int(scale*W)
if op == 'right':
new_mp[:, :, :, K:] = mp[:, :, :, 0:W-K]
elif op == 'left':
new_mp[:, :, :, 0:W-K] = mp[:, :, :, K:]
elif op == 'down':
new_mp[:, :, K:, :] = mp[:, :, 0:W-K, :]
elif op == 'up':
new_mp[:, :, 0:W-K, :] = mp[:, :, K:, :]
if flip is not None:
new_mp = torch.flip(new_mp, dims=flip)
return new_mp
def mv_layer(self, x_t, bg_id, fg_id, op_id):
bg_img = x_t[bg_id:(bg_id+1)].clone()
fg_img = x_t[fg_id:(fg_id+1)].clone()
fg_mask = self.fg_mask_list[fg_id-3]
op_list = self.op_list[fg_id-3]
for item in op_list:
op, scale = item[0], item[1]
if scale != 0:
fg_img = self.mv_op(fg_img, op=op, scale=scale)
fg_mask = self.mv_op(fg_mask, op=op, scale=scale)
x_t[op_id:(op_id+1)] = bg_img*(1-fg_mask) + fg_img*fg_mask
def __call__(self, x_t):
self.counter += 1
# inpainting
if self.blend_time[0] <= self.counter <= self.blend_time[1]:
x_t[1:2] = x_t[1:2]*self.remove_mask + x_t[0:1]*(1-self.remove_mask)
if self.counter == self.blend_time[1] + 1 and self.mode != "removal":
b = x_t.shape[0]
bg_id = 1 #bg_layer
op_id = 2 #canvas
for fg_id in range(3, b): #fg_layer
self.mv_layer(x_t, bg_id=bg_id, fg_id=fg_id, op_id=op_id)
bg_id = op_id
return x_t
def __init__(self, remove_mask, fg_mask_list, refine_mask=None,
blend_time=[0, 40],
mode="removal", op_list=None):
self.counter = 0
self.mode = mode
self.op_list = op_list
self.blend_time = blend_time
self.remove_mask = remove_mask
self.refine_mask = refine_mask
if self.refine_mask is not None:
self.new_mask = self.remove_mask + self.refine_mask
self.new_mask[self.new_mask>0] = 1
else:
self.new_mask = None
self.fg_mask_list = fg_mask_list
class Control():
def step_callback(self, x_t):
if self.layer_fusion is not None:
x_t = self.layer_fusion(x_t)
return x_t
def __init__(self, layer_fusion):
self.layer_fusion = layer_fusion
def register_attention_control(model, controller, mask_time=[0, 40], refine_time=[0, 25]):
def ca_forward(self, place_in_unet):
to_out = self.to_out
if type(to_out) is torch.nn.modules.container.ModuleList:
to_out = self.to_out[0]
else:
to_out = self.to_out
self.counter = 0 #time
def forward(hidden_states, encoder_hidden_states=None, attention_mask=None): #self_attention
x = hidden_states.clone()
context = encoder_hidden_states
is_cross = context is not None
if is_cross is False:
if controller.layer_fusion is not None and (mask_time[0] < self.counter < mask_time[1]):
b, i, j = x.shape
H = W = int(math.sqrt(i))
x_old = x.clone()
x = x.reshape(b, H, W, j)
new_mask = controller.layer_fusion.remove_mask
if new_mask is not None:
new_mask[new_mask>0] = 1
new_mask = F.interpolate(new_mask.to(dtype=torch.float32).clone(), size=(H, W), mode='bilinear').cuda()
new_mask = (1 - new_mask).reshape(1, H, W).unsqueeze(-1)
if (refine_time[0] < self.counter <= refine_time[1]) and controller.layer_fusion.refine_mask is not None:
new_mask = controller.layer_fusion.new_mask
new_mask = F.interpolate(new_mask.to(dtype=torch.float32).clone(), size=(H, W), mode='bilinear').cuda()
new_mask = (1 - new_mask).reshape(1, H, W).unsqueeze(-1)
idx = 1 #inpaiint_idx:bg
x[int(b/2)+idx, :, :] = (x[int(b/2)+idx, :, :]*new_mask[0])
x = x.reshape(b, i, j)
if is_cross:
q = self.to_q(x)
k = self.to_k(context)
v = self.to_v(context)
else:
context = x
q = self.to_q(hidden_states)
k = self.to_k(x)
v = self.to_v(hidden_states)
q = self.head_to_batch_dim(q)
k = self.head_to_batch_dim(k)
v = self.head_to_batch_dim(v)
if hasattr(controller, 'count_layers'):
controller.count_layers(place_in_unet,is_cross)
sim = torch.einsum("b i d, b j d -> b i j", q.clone(), k.clone()) * self.scale
attn = sim.softmax(dim=-1)
out = torch.einsum("b i j, b j d -> b i d", attn, v)
out = self.batch_to_head_dim(out)
global global_cnt
self.counter += 1
return to_out(out)
return forward
def register_recr(net_, count, place_in_unet):
if net_.__class__.__name__ == 'Attention':
net_.forward = ca_forward(net_, place_in_unet)
return count + 1
elif hasattr(net_, 'children'):
for net__ in net_.children():
count = register_recr(net__, count, place_in_unet)
return count
cross_att_count = 0
sub_nets = model.unet.named_children()
for net in sub_nets:
if "down" in net[0]:
cross_att_count += register_recr(net[1], 0, "down")
elif "up" in net[0]:
cross_att_count += register_recr(net[1], 0, "up")
elif "mid" in net[0]:
cross_att_count += register_recr(net[1], 0, "mid")
controller.num_att_layers = cross_att_count
class DesignEdit():
def __init__(self, pretrained_model_path="/home/jyr/model/stable-diffusion-xl-base-1.0"):
self.model_dtype = "fp16"
self.pretrained_model_path=pretrained_model_path
self.num_ddim_steps = 50
self.mask_time = [0, 40]
self.op_list = {}
self.attend_scale = {}
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
if self.model_dtype == "fp16":
torch_dtype = torch.float16
elif self.model_dtype == "fp32":
torch_dtype = torch.float32
self.pipe = sdxl.from_pretrained(self.pretrained_model_path, torch_dtype=torch_dtype, use_safetensors=True, variant=self.model_dtype,scheduler=scheduler)
@spaces.GPU
def init_model(self, num_ddim_steps=50):
device = torch.device('cuda:0')
self.pipe.to(device)
inversion = Inversion(self.pipe,num_ddim_steps)
return self.pipe, inversion
@spaces.GPU(duration=120, enable_queue=True)
def run_remove(self, original_image=None, mask_1=None, mask_2=None, mask_3=None, refine_mask=None,
ori_1=None, ori_2=None, ori_3=None,
prompt="", save_dir="./tmp", mode='removal',):
# 01-1:
self.ldm_model, self.inversion= self.init_model(num_ddim_steps=self.num_ddim_steps)
if original_image is None:
original_image = ori_1 if ori_1 is not None else ori_2 if ori_2 is not None else ori_3
op_list = None
attend_scale = 20
sample_ref_match={0 : 0, 1 : 0}
ori_shape = original_image.shape
# 01-2: prepare: image_gt, remove_mask, fg_mask_list, refine_mask
image_gt = Image.fromarray(original_image).resize((1024, 1024))
image_gt = np.stack([np.array(image_gt)])
mask_list = [mask_1, mask_2, mask_3]
remove_mask = utils.attend_mask(utils.add_masks_resized(mask_list), attend_scale=attend_scale) # numpy to tensor
fg_mask_list = None
refine_mask = utils.attend_mask(utils.convert_and_resize_mask(refine_mask)) if refine_mask is not None else None
# 01-3: prepare: prompts, blend_time, refine_time
prompts = len(sample_ref_match)*[prompt] # 2
blend_time = [0, 41]
refine_time = [0, 25]
# 02: invert
_, x_t, x_stars, prompt_embeds, pooled_prompt_embeds = self.inversion.invert(image_gt, prompts, inv_batch_size=1)
# 03: init layer_fusion and controller
lb = LayerFusion(remove_mask=remove_mask, fg_mask_list=fg_mask_list, refine_mask=refine_mask,
blend_time=blend_time, mode=mode, op_list=op_list)
controller = Control(layer_fusion=lb)
register_attention_control(model=self.ldm_model, controller=controller, mask_time=self.mask_time, refine_time=refine_time)
# 04: generate images
images = self.ldm_model(controller=controller, prompt=prompts,
latents=x_t, x_stars=x_stars,
negative_prompt_embeds=prompt_embeds,
negative_pooled_prompt_embeds=pooled_prompt_embeds,
sample_ref_match=sample_ref_match)
folder = None
utils.view_images(images, folder=folder)
return [cv2.resize(images[1], (ori_shape[1], ori_shape[0]))]
@spaces.GPU(duration=120, enable_queue=True)
def run_zooming(self, original_image, width_scale=1, height_scale=1, prompt="", save_dir="./tmp", mode='removal'):
self.ldm_model, self.inversion= self.init_model(num_ddim_steps=self.num_ddim_steps)
# 01-1:
op_list = {0: ['zooming', [height_scale, width_scale]]}
ori_shape = original_image.shape
attend_scale = 30
sample_ref_match = {0 : 0, 1 : 0}
# 01-2: prepare: image_gt, remove_mask, fg_mask_list, refine_mask
img_new, mask = utils.zooming(original_image, [height_scale, width_scale])
img_new_copy = img_new.copy()
mask_copy = mask.copy()
image_gt = Image.fromarray(img_new).resize((1024, 1024))
image_gt = np.stack([np.array(image_gt)])
remove_mask = utils.attend_mask(utils.convert_and_resize_mask(mask), attend_scale=attend_scale) # numpy to tensor
fg_mask_list = None
refine_mask = None
# 01-3: prepare: prompts, blend_time, refine_time
prompts = len(sample_ref_match)*[prompt] # 2
blend_time = [0, 41]
refine_time = [0, 25]
# 02: invert
_, x_t, x_stars, prompt_embeds, pooled_prompt_embeds = self.inversion.invert(image_gt, prompts, inv_batch_size=1)
# 03: init layer_fusion and controller
lb = LayerFusion(remove_mask=remove_mask, fg_mask_list=fg_mask_list, blend_time=blend_time,
mode=mode, op_list=op_list)
controller = Control(layer_fusion=lb)
register_attention_control(model=self.ldm_model, controller=controller, mask_time=self.mask_time, refine_time=refine_time)
# 04: generate images
images = self.ldm_model(controller=controller, prompt=prompts,
latents=x_t, x_stars=x_stars,
negative_prompt_embeds=prompt_embeds,
negative_pooled_prompt_embeds=pooled_prompt_embeds,
sample_ref_match=sample_ref_match)
folder = None
utils.view_images(images, folder=folder)
resized_img = cv2.resize(images[1], (ori_shape[1], ori_shape[0]))
return [resized_img], [img_new_copy], [mask_copy]
@spaces.GPU(duration=120, enable_queue=True)
def run_panning(self, original_image, w_direction, w_scale, h_direction, h_scale, prompt="", save_dir="./tmp", mode='removal'):
# 01-1: prepare: op_list, attend_scale, sample_ref_match
self.ldm_model, self.inversion= self.init_model(num_ddim_steps=self.num_ddim_steps)
ori_shape = original_image.shape
attend_scale = 30
sample_ref_match = {0 : 0, 1 : 0}
# 01-2: prepare: image_gt, remove_mask, fg_mask_list, refine_mask
op_list = [[w_direction, w_scale], [h_direction, h_scale]]
img_new, mask = utils.panning(original_image, op_list=op_list)
img_new_copy = img_new.copy()
mask_copy = mask.copy()
image_gt = Image.fromarray(img_new).resize((1024, 1024))
image_gt = np.stack([np.array(image_gt)])
remove_mask = utils.attend_mask(utils.convert_and_resize_mask(mask), attend_scale=attend_scale) # numpy to tensor
fg_mask_list = None
refine_mask = None
# 01-3: prepare: prompts, blend_time, refine_time
prompts = len(sample_ref_match)*[prompt] # 2
blend_time = [0, 41]
refine_time = [0, 25]
# 02: invert
_, x_t, x_stars, prompt_embeds, pooled_prompt_embeds = self.inversion.invert(image_gt, prompts, inv_batch_size=1)
# 03: init layer_fusion and controller
lb = LayerFusion(remove_mask=remove_mask, fg_mask_list=fg_mask_list, blend_time=blend_time,
mode=mode, op_list=op_list)
controller = Control(layer_fusion=lb)
register_attention_control(model=self.ldm_model, controller=controller, mask_time=self.mask_time, refine_time=refine_time)
# 04: generate images
images = self.ldm_model(controller=controller, prompt=prompts,
latents=x_t, x_stars=x_stars,
negative_prompt_embeds=prompt_embeds,
negative_pooled_prompt_embeds=pooled_prompt_embeds,
sample_ref_match=sample_ref_match)
folder = None
utils.view_images(images, folder=folder)
resized_img = cv2.resize(images[1], (ori_shape[1], ori_shape[0]))
return [resized_img], [img_new_copy], [mask_copy]
# layer-wise multi-object editing
def process_layer_states(self, layer_states):
self.ldm_model, self.inversion= self.init_model(num_ddim_steps=self.num_ddim_steps)
image_paths = []
mask_paths = []
op_list = []
for state in layer_states:
img, mask, dx, dy, resize, w_flip, h_flip = state
if img is not None:
img = cv2.resize(img, (1024, 1024))
mask = utils.convert_and_resize_mask(mask)
dx_command = ['right', dx] if dx > 0 else ['left', -dx]
dy_command = ['up', dy] if dy > 0 else ['down', -dy]
flip_code = None
if w_flip == "left/right" and h_flip == "down/up":
flip_code = -1
elif w_flip == "left/right":
flip_code = 1 # 或者其他默认值,根据您的需要设置
elif h_flip == "down/up":
flip_code = 0
op_list.append([dx_command, dy_command])
img, mask, _ = utils.resize_image_with_mask(img, mask, resize)
img, mask, _ = utils.flip_image_with_mask(img, mask, flip_code=flip_code)
image_paths.append(img)
mask_paths.append(utils.attend_mask(mask))
sample_ref_match = {0: 0, 1: 0, 2: 0, 3: 1, 4: 2, 5: 3}
required_length = len(image_paths) + 3
truncated_sample_ref_match = {k: sample_ref_match[k] for k in sorted(sample_ref_match.keys())[:required_length]}
return image_paths, mask_paths, op_list, truncated_sample_ref_match
@spaces.GPU(duration=200)
def run_layer(self, bg_img, l1_img, l1_dx, l1_dy, l1_resize, l1_w_flip, l1_h_flip,
l2_img, l2_dx, l2_dy, l2_resize, l2_w_flip, l2_h_flip,
l3_img, l3_dx, l3_dy, l3_resize, l3_w_flip, l3_h_flip,
bg_mask, l1_mask, l2_mask, l3_mask,
bg_ori=None, l1_ori=None, l2_ori=None, l3_ori=None,
prompt="", save_dir="./tmp", mode='layerwise'):
self.ldm_model, self.inversion= self.init_model(num_ddim_steps=self.num_ddim_steps)
# 00: prepare: layer-wise states
bg_img = bg_ori if bg_ori is not None else bg_img
l1_img = l1_ori if l1_ori is not None else l1_img
l2_img = l2_ori if l2_ori is not None else l2_img
l3_img = l3_ori if l3_ori is not None else l3_img
for mask in [bg_mask, l1_mask, l2_mask, l3_mask]:
if mask is None:
mask = np.zeros((1024, 1024), dtype=np.uint8)
else:
mask = utils.convert_and_resize_mask(mask)
l1_state = [l1_img, l1_mask, l1_dx, l1_dy, l1_resize, l1_w_flip, l1_h_flip]
l2_state = [l2_img, l2_mask, l2_dx, l2_dy, l2_resize, l2_w_flip, l2_h_flip]
l3_state = [l3_img, l3_mask, l3_dx, l3_dy, l3_resize, l3_w_flip, l3_h_flip]
ori_shape = bg_img.shape
image_paths, fg_mask_list, op_list, sample_ref_match = self.process_layer_states([l1_state, l2_state, l3_state])
if image_paths == []:
mode = "removal"
# 01-1: prepare: image_gt, remove_mask, fg_mask_list, refine_mask
attend_scale = 20
image_gt = [bg_img] + image_paths
image_gt = [Image.fromarray(img).resize((1024, 1024)) for img in image_gt]
image_gt = np.stack(image_gt)
remove_mask = utils.attend_mask(bg_mask, attend_scale=attend_scale)
refine_mask = None
# 01-2: prepare: promptrun_masks, blend_time, refine_time
prompts = len(sample_ref_match)*[prompt] # 2
blend_time = [0, 41]
refine_time = [0, 25]
attend_scale = []
# 02: invert
_, x_t, x_stars, prompt_embeds, pooled_prompt_embeds = self.inversion.invert(image_gt, prompts, inv_batch_size=len(image_gt))
# 03: init layer_fusion and controller
lb = LayerFusion(remove_mask=remove_mask, fg_mask_list=fg_mask_list, blend_time=blend_time, refine_mask=refine_mask,
mode=mode, op_list=op_list)
controller = Control(layer_fusion=lb)
register_attention_control(model=self.ldm_model, controller=controller, mask_time=self.mask_time, refine_time=refine_time)
# 04: generate images
images = self.ldm_model(controller=controller, prompt=prompts,
latents=x_t, x_stars=x_stars,
negative_prompt_embeds=prompt_embeds,
negative_pooled_prompt_embeds=pooled_prompt_embeds,
sample_ref_match=sample_ref_match)
folder = None
utils.view_images(images, folder=folder)
if mode == 'removal':
resized_img = cv2.resize(images[1], (ori_shape[1], ori_shape[0]))
else:
resized_img = cv2.resize(images[2], (ori_shape[1], ori_shape[0]))
return [resized_img]
@spaces.GPU(duration=120, enable_queue=True)
def run_moving(self, bg_img, bg_ori, bg_mask, l1_dx, l1_dy, l1_resize,
l1_w_flip=None, l1_h_flip=None, selected_points=None,
prompt="", save_dir="./tmp", mode='layerwise'):
self.ldm_model, self.inversion= self.init_model(num_ddim_steps=self.num_ddim_steps)
# 00: prepare: layer-wise states
bg_img = bg_ori if bg_ori is not None else bg_img
l1_img = bg_img
if bg_mask is None:
bg_mask = np.zeros((1024, 1024), dtype=np.uint8)
else:
bg_mask = utils.convert_and_resize_mask(bg_mask)
l1_mask = bg_mask
l1_state = [l1_img, l1_mask, l1_dx, l1_dy, l1_resize, l1_w_flip, l1_h_flip]
ori_shape = bg_img.shape
image_paths, fg_mask_list, op_list, sample_ref_match = self.process_layer_states([l1_state])
# 01-1: prepare: image_gt, remove_mask, fg_mask_list, refine_mask
attend_scale = 20
image_gt = [bg_img] + image_paths
image_gt = [Image.fromarray(img).resize((1024, 1024)) for img in image_gt]
image_gt = np.stack(image_gt)
remove_mask = utils.attend_mask(bg_mask, attend_scale=attend_scale)
refine_mask = None
# 01-2: prepare: promptrun_masks, blend_time, refine_time
prompts = len(sample_ref_match)*[prompt] # 2
blend_time = [0, 41]
refine_time = [0, 25]
attend_scale = []
# 02: invert
_, x_t, x_stars, prompt_embeds, pooled_prompt_embeds = self.inversion.invert(image_gt, prompts, inv_batch_size=len(image_gt))
# 03: init layer_fusion and controller
lb = LayerFusion(remove_mask=remove_mask, fg_mask_list=fg_mask_list, blend_time=blend_time, refine_mask=refine_mask,
mode=mode, op_list=op_list)
controller = Control(layer_fusion=lb)
register_attention_control(model=self.ldm_model, controller=controller, mask_time=self.mask_time, refine_time=refine_time)
# 04: generate images
images = self.ldm_model(controller=controller, prompt=prompts,
latents=x_t, x_stars=x_stars,
negative_prompt_embeds=prompt_embeds,
negative_pooled_prompt_embeds=pooled_prompt_embeds,
sample_ref_match=sample_ref_match)
folder = None
utils.view_images(images, folder=folder)
resized_img = cv2.resize(images[2], (ori_shape[1], ori_shape[0]))
return [resized_img]
# turn mask to 1024x1024 unit-8
def run_mask(self, mask_1, mask_2, mask_3, mask_4):
mask_list = [mask_1, mask_2, mask_3, mask_4]
final_mask = utils.add_masks_resized(mask_list)
return final_mask |