Spaces:
Running
Running
File size: 12,084 Bytes
37ee4a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from typing import List, Tuple, Type
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from .mlp import MLPBlock
class PromptEncoder(nn.Module):
def __init__(
self,
embed_dim: int,
image_embedding_size: Tuple[int, int],
input_image_size: Tuple[int, int],
) -> None:
"""
Encodes prompts for input to SAM's mask decoder.
Arguments:
embed_dim (int): The prompts' embedding dimension
image_embedding_size (tuple(int, int)): The spatial size of the
image embedding, as (H, W).
input_image_size (int): The padded size of the image as input
to the image encoder, as (H, W).
"""
super().__init__()
self.embed_dim = embed_dim
self.input_image_size = input_image_size
self.image_embedding_size = image_embedding_size
self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
self.invalid_points = nn.Embedding(1, embed_dim)
self.point_embeddings = nn.Embedding(1, embed_dim)
self.bbox_top_left_embeddings = nn.Embedding(1, embed_dim)
self.bbox_bottom_right_embeddings = nn.Embedding(1, embed_dim)
def get_dense_pe(self) -> torch.Tensor:
"""
Returns the positional encoding used to encode point prompts,
applied to a dense set of points the shape of the image encoding.
Returns:
torch.Tensor: Positional encoding with shape
1x(embed_dim)x(embedding_h)x(embedding_w)
"""
return self.pe_layer(self.image_embedding_size).unsqueeze(0)
def _embed_points(
self,
points: torch.Tensor,
labels: torch.Tensor,
) -> torch.Tensor:
"""Embeds point prompts."""
points = points + 0.5 # Shift to center of pixel
point_embedding = self.pe_layer.forward_with_coords(
points, self.input_image_size
)
invalid_label_ids = torch.eq(labels, -1)[:,:,None]
point_label_ids = torch.eq(labels, 1)[:,:,None]
topleft_label_ids = torch.eq(labels, 2)[:,:,None]
bottomright_label_ids = torch.eq(labels, 3)[:,:,None]
point_embedding = point_embedding + self.invalid_points.weight[:,None,:] * invalid_label_ids
point_embedding = point_embedding + self.point_embeddings.weight[:,None,:] * point_label_ids
point_embedding = point_embedding + self.bbox_top_left_embeddings.weight[:,None,:] * topleft_label_ids
point_embedding = point_embedding + self.bbox_bottom_right_embeddings.weight[:,None,:] * bottomright_label_ids
return point_embedding
def forward(
self,
coords,
labels,
) -> torch.Tensor:
"""
Embeds different types of prompts, returning both sparse and dense
embeddings.
Arguments:
points: A tensor of shape [B, 2]
labels: An integer tensor of shape [B] where each element is 1,2 or 3.
Returns:
torch.Tensor: sparse embeddings for the points and boxes, with shape
BxNx(embed_dim), where N is determined by the number of input points
and boxes.
"""
return self._embed_points(coords, labels)
class PositionEmbeddingRandom(nn.Module):
"""
Positional encoding using random spatial frequencies.
"""
def __init__(self, num_pos_feats: int) -> None:
super().__init__()
self.register_buffer(
"positional_encoding_gaussian_matrix", torch.randn((2, num_pos_feats))
)
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
"""Positionally encode points that are normalized to [0,1]."""
# assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
coords = 2 * coords - 1
coords = coords @ self.positional_encoding_gaussian_matrix
coords = 2 * np.pi * coords
# outputs d_1 x ... x d_n x C shape
return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
def forward(self, size: Tuple[int, int]) -> torch.Tensor:
"""Generate positional encoding for a grid of the specified size."""
h, w = size
device = self.positional_encoding_gaussian_matrix.device
grid = torch.ones([h, w], device=device, dtype=torch.float32)
y_embed = grid.cumsum(dim=0) - 0.5
x_embed = grid.cumsum(dim=1) - 0.5
y_embed = y_embed / h
x_embed = x_embed / w
pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
return pe.permute(2, 0, 1) # C x H x W
def forward_with_coords(
self, coords_input: torch.Tensor, image_size: Tuple[int, int]
) -> torch.Tensor:
"""Positionally encode points that are not normalized to [0,1]."""
coords = coords_input.clone()
coords[:, :, 0] = coords[:, :, 0] / image_size[1]
coords[:, :, 1] = coords[:, :, 1] / image_size[0]
return self._pe_encoding(coords.to(torch.float)) # B x N x C
class MaskDecoder(nn.Module):
def __init__(
self,
*,
transformer_dim: int,
transformer: nn.Module,
num_multimask_outputs: int,
activation: Type[nn.Module],
normalization_type: str,
normalize_before_activation: bool,
iou_head_depth: int,
iou_head_hidden_dim: int,
upscaling_layer_dims: List[int],
) -> None:
"""
Predicts masks given an image and prompt embeddings, using a
transformer architecture.
Arguments:
transformer_dim (int): the channel dimension of the transformer
transformer (nn.Module): the transformer used to predict masks
num_multimask_outputs (int): the number of masks to predict
when disambiguating masks
activation (nn.Module): the type of activation to use when
upscaling masks
iou_head_depth (int): the depth of the MLP used to predict
mask quality
iou_head_hidden_dim (int): the hidden dimension of the MLP
used to predict mask quality
"""
super().__init__()
self.transformer_dim = transformer_dim
self.transformer = transformer
self.num_multimask_outputs = num_multimask_outputs
self.iou_token = nn.Embedding(1, transformer_dim)
if num_multimask_outputs > 1:
self.num_mask_tokens = num_multimask_outputs + 1
else:
self.num_mask_tokens = 1
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
output_dim_after_upscaling = transformer_dim
self.final_output_upscaling_layers = nn.ModuleList([])
for idx, layer_dims in enumerate(upscaling_layer_dims):
self.final_output_upscaling_layers.append(
nn.Sequential(
nn.ConvTranspose2d(
output_dim_after_upscaling,
layer_dims,
kernel_size=2,
stride=2,
),
nn.GroupNorm(1, layer_dims)
if idx < len(upscaling_layer_dims) - 1
else nn.Identity(),
activation(),
)
)
output_dim_after_upscaling = layer_dims
self.output_hypernetworks_mlps = nn.ModuleList(
[
MLPBlock(
input_dim=transformer_dim,
hidden_dim=transformer_dim,
output_dim=output_dim_after_upscaling,
num_layers=2,
act=activation,
)
for i in range(self.num_mask_tokens)
]
)
self.iou_prediction_head = MLPBlock(
input_dim=transformer_dim,
hidden_dim=iou_head_hidden_dim,
output_dim=self.num_mask_tokens,
num_layers=iou_head_depth,
act=activation,
)
def forward(
self,
image_embeddings: torch.Tensor,
image_pe: torch.Tensor,
sparse_prompt_embeddings: torch.Tensor,
multimask_output: bool,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Predict masks given image and prompt embeddings.
Arguments:
image_embeddings: A tensor of shape [B, C, H, W] or [B*max_num_queries, C, H, W]
image_pe (torch.Tensor): positional encoding with the shape of image_embeddings (the batch dimension is broadcastable).
sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
multimask_output (bool): Whether to return multiple masks or a single
mask.
Returns:
torch.Tensor: batched predicted masks
torch.Tensor: batched predictions of mask quality
"""
(
batch_size,
max_num_queries,
sparse_embed_dim_1,
sparse_embed_dim_2,
) = sparse_prompt_embeddings.shape
(
_,
image_embed_dim_c,
image_embed_dim_h,
image_embed_dim_w,
) = image_embeddings.shape
# Tile the image embedding for all queries.
image_embeddings_tiled = torch.tile(
image_embeddings[:, None, :, :, :], [1, max_num_queries, 1, 1, 1]
).view(
batch_size * max_num_queries,
image_embed_dim_c,
image_embed_dim_h,
image_embed_dim_w,
)
sparse_prompt_embeddings = sparse_prompt_embeddings.reshape(
batch_size * max_num_queries, sparse_embed_dim_1, sparse_embed_dim_2
)
masks, iou_pred = self.predict_masks(
image_embeddings=image_embeddings_tiled,
image_pe=image_pe,
sparse_prompt_embeddings=sparse_prompt_embeddings,
)
if multimask_output and self.num_multimask_outputs > 1:
return masks[:, 1:, :], iou_pred[:, 1:]
else:
return masks[:, :1, :], iou_pred[:, :1]
def predict_masks(
self,
image_embeddings: torch.Tensor,
image_pe: torch.Tensor,
sparse_prompt_embeddings: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Predicts masks. See 'forward' for more details."""
# Concatenate output tokens
output_tokens = torch.cat(
[self.iou_token.weight, self.mask_tokens.weight], dim=0
)
output_tokens = output_tokens.unsqueeze(0).expand(
sparse_prompt_embeddings.size(0), -1, -1
)
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
# Expand per-image data in batch direction to be per-mask
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
b, c, h, w = image_embeddings.shape
hs, src = self.transformer(image_embeddings, pos_src, tokens)
iou_token_out = hs[:, 0, :]
mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]
# Upscale mask embeddings and predict masks using the mask tokens
upscaled_embedding = src.transpose(1, 2).view(b, c, h, w)
for upscaling_layer in self.final_output_upscaling_layers:
upscaled_embedding = upscaling_layer(upscaled_embedding)
hyper_in_list: List[torch.Tensor] = []
for i, output_hypernetworks_mlp in enumerate(self.output_hypernetworks_mlps):
hyper_in_list.append(output_hypernetworks_mlp(mask_tokens_out[:, i, :]))
hyper_in = torch.stack(hyper_in_list, dim=1)
b, c, h, w = upscaled_embedding.shape
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
# Generate mask quality predictions
iou_pred = self.iou_prediction_head(iou_token_out)
return masks, iou_pred
|