import streamlit as st from openai import OpenAI import os import sys from dotenv import load_dotenv, dotenv_values load_dotenv() # initialize the client client = OpenAI( base_url="https://wzmh05cfg7kqctcc.us-east-1.aws.endpoints.huggingface.cloud/v1/", api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN')#"hf_xxx" # Replace with your token ) #Create model model_links ={ "Turkish-7b-mix":"burak/Trendyol-Turkcell-stock" } #Pull info about the model to display model_info ={ "Turkish-7b-mix": { 'description':"""Turkish-7b-Mix is a merge of pre-trained language models created using **mergekit**.\n \ ### Merge Method\n \ This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [Trendyol/Trendyol-LLM-7b-chat-dpo-v1.0](https://huggingface.co/Trendyol/Trendyol-LLM-7b-chat-dpo-v1.0) as a base.\n \ ### Models Merged\n \ The following models were included in the merge:\n \ * [TURKCELL/Turkcell-LLM-7b-v1](https://huggingface.co/TURKCELL/Turkcell-LLM-7b-v1)\n \ * [Trendyol/Trendyol-LLM-7b-chat-v1.0](https://huggingface.co/Trendyol/Trendyol-LLM-7b-chat-v1.0)\n""", 'logo': 'https://huggingface.co/spaces/burak/TurkishChatbot/resolve/main/icon.jpg' }, } def reset_conversation(): ''' Resets Conversation ''' st.session_state.conversation = [] st.session_state.messages = [] return None st.sidebar.image(model_info["Turkish-7b-mix"]['logo']) # Define the available models models =[key for key in model_links.keys()] # Create the sidebar with the dropdown for model selection selected_model = st.sidebar.selectbox("Select Model", models) #Create a temperature slider temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5)) #Add reset button to clear conversation st.sidebar.button('Reset Chat', on_click=reset_conversation) #Reset button # Create model description st.sidebar.write(f"You're now chatting with **{selected_model}**") st.sidebar.markdown(model_info[selected_model]['description']) st.sidebar.markdown("*Generated content may be inaccurate or false.*") if "prev_option" not in st.session_state: st.session_state.prev_option = selected_model if st.session_state.prev_option != selected_model: st.session_state.messages = [] # st.write(f"Changed to {selected_model}") st.session_state.prev_option = selected_model reset_conversation() #Pull in the model we want to use repo_id = model_links[selected_model] st.subheader(f'AI - {selected_model}') # st.title(f'ChatBot Using {selected_model}') # Set a default model if selected_model not in st.session_state: st.session_state[selected_model] = model_links[selected_model] # Initialize chat history if "messages" not in st.session_state: st.session_state.messages = [] # Display chat messages from history on app rerun for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) # Accept user input if prompt := st.chat_input(f"Hi I'm {selected_model}, ask me a question"): # Display user message in chat message container with st.chat_message("user"): st.markdown(prompt) # Add user message to chat history st.session_state.messages.append({"role": "user", "content": prompt}) # Display assistant response in chat message container with st.chat_message("assistant"): stream = client.chat.completions.create( model= model_links[selected_model], messages=[ {"role": m["role"], "content": m["content"]} for m in st.session_state.messages ], temperature=temp_values,#0.5, stream=True, max_tokens=500, ) response = st.write_stream(stream) st.session_state.messages.append({"role": "assistant", "content": response})