File size: 3,934 Bytes
8ba6a85
 
 
 
 
 
 
 
 
 
 
2b91f70
8ba6a85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8a4050
 
8ba6a85
c3b47db
8ba6a85
c3b47db
8ba6a85
c3b47db
 
 
 
9c75f23
8ba6a85
 
 
 
 
 
 
 
 
 
 
 
 
4af23d9
 
 
 
8ba6a85
 
9435276
8ba6a85
 
9435276
8ba6a85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import streamlit as st
from openai import OpenAI
import os
import sys
from dotenv import load_dotenv, dotenv_values
load_dotenv()



# initialize the client
client = OpenAI(
  base_url="https://wzmh05cfg7kqctcc.us-east-1.aws.endpoints.huggingface.cloud/v1/",
  api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN')#"hf_xxx" # Replace with your token
) 



#Create model
model_links ={
    
    "Turkish-7b-mix":"burak/Trendyol-Turkcell-stock"

}

#Pull info about the model to display
model_info ={
   
    "Turkish-7b-mix":        
    { 'description':"""Turkish-7b-Mix is a merge of pre-trained language models created using **mergekit**.\n \

### Merge Method\n \

This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [Trendyol/Trendyol-LLM-7b-chat-dpo-v1.0](https://huggingface.co/Trendyol/Trendyol-LLM-7b-chat-dpo-v1.0) as a base.\n \

### Models Merged\n \

The following models were included in the merge:\n \
* [TURKCELL/Turkcell-LLM-7b-v1](https://huggingface.co/TURKCELL/Turkcell-LLM-7b-v1)\n \
* [Trendyol/Trendyol-LLM-7b-chat-v1.0](https://huggingface.co/Trendyol/Trendyol-LLM-7b-chat-v1.0)\n""",
     
     'logo': 'https://huggingface.co/spaces/burak/TurkishChatbot/resolve/main/icon.jpg'
   
},

}

def reset_conversation():
    '''
    Resets Conversation
    '''
    st.session_state.conversation = []
    st.session_state.messages = []
    return None



st.sidebar.image(model_info["Turkish-7b-mix"]['logo'])


# Define the available models
models =[key for key in model_links.keys()]

# Create the sidebar with the dropdown for model selection
selected_model = st.sidebar.selectbox("Select Model", models)

#Create a temperature slider
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5))


#Add reset button to clear conversation
st.sidebar.button('Reset Chat', on_click=reset_conversation) #Reset button


# Create model description
st.sidebar.write(f"You're now chatting with **{selected_model}**")
st.sidebar.markdown(model_info[selected_model]['description'])
st.sidebar.markdown("*Generated content may be inaccurate or false.*")



if "prev_option" not in st.session_state:
    st.session_state.prev_option = selected_model

if st.session_state.prev_option != selected_model:
    st.session_state.messages = []
    # st.write(f"Changed to {selected_model}")
    st.session_state.prev_option = selected_model
    reset_conversation()



#Pull in the model we want to use
repo_id = model_links[selected_model]


st.subheader(f'AI - {selected_model}')
# st.title(f'ChatBot Using {selected_model}')

# Set a default model
if selected_model not in st.session_state:
    st.session_state[selected_model] = model_links[selected_model] 

# Initialize chat history
if "messages" not in st.session_state:
    st.session_state.messages = []


# Display chat messages from history on app rerun
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])



# Accept user input
if prompt := st.chat_input(f"Hi I'm {selected_model}, ask me a question"):

    # Display user message in chat message container
    with st.chat_message("user"):
        st.markdown(prompt)
    # Add user message to chat history
    st.session_state.messages.append({"role": "user", "content": prompt})


    # Display assistant response in chat message container
    with st.chat_message("assistant"):
        stream = client.chat.completions.create(
            model= model_links[selected_model],
            messages=[
                {"role": m["role"], "content": m["content"]}
                for m in st.session_state.messages
            ],
            temperature=temp_values,#0.5,
            stream=True,
            max_tokens=500,
                 
        )
        
        response = st.write_stream(stream)  
    st.session_state.messages.append({"role": "assistant", "content": response})