import gradio as gr import os from transformers import pipeline, AutoModelForQuestionAnswering, AutoTokenizer from datasets import load_dataset import torch import soundfile as sf from pdfminer.high_level import extract_text from llama_cpp import Llama # Check if MPS is available and set the device if torch.backends.mps.is_available(): device = torch.device("mps") print("Using MPS device") else: device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"MPS not available, using {device}") def toText(audio): asr = pipeline( "automatic-speech-recognition", model="openai/whisper-tiny.en", chunk_length_s=30, device=device, ) question = asr(audio, batch_size=8)["text"] return question def extract_answer(question, text): # Load the LLaMA model model_path="/Users/chandima/.cache/lm-studio/models/lmstudio-community/Llama-3.2-3B-Instruct-GGUF/Llama-3.2-3B-Instruct-Q3_K_L.gguf" # Load the LLaMA model with MPS acceleration llm = Llama( model_path=model_path, n_gpu_layers=-1, # Use all available layers for GPU acceleration n_ctx=2048, # Adjust context size as needed verbose=True, # Optional: for debugging use_mlock=True, # Optional: for better memory management n_threads=6, # Adjust based on your CPU use_mmap=True, # Optional: for faster loading ) # Use LLaMA to extract skills prompt = f""" Answer the question based on the Resume. Question: {question}: Resume: {text} Answer: """ response = llm(prompt, max_tokens=800, stop=["Human:", "\n\n"]) answer = response['choices'][0]['text'].strip() print(answer) return answer def toAudio(text): synthesiser = pipeline("text-to-speech", "microsoft/speecht5_tts", device=device) embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) speech = synthesiser(text, forward_params={"speaker_embeddings": speaker_embedding}) return speech def clone(audio, file): question = toText(audio=audio) text = extract_text(file.name) res = extract_answer(question, text) print(res) speech = toAudio(res) sf.write("speech.wav", speech["audio"], samplerate=speech["sampling_rate"]) return "./speech.wav" iface = gr.Interface(fn=clone, inputs=[gr.Audio(type='filepath', label='Voice reference audio file'), gr.File(label="Resume")], outputs=gr.Audio(label='Says'), title='Voice Clone', description=""" whisper """, theme = gr.themes.Base(primary_hue="teal",secondary_hue="teal",neutral_hue="slate")) iface.launch()