Spaces:
Sleeping
Sleeping
with voice clone
Browse files- .gitignore +165 -0
- app.py +85 -0
- requirements.txt +169 -0
- tts.py +14 -0
- whisper.py +20 -0
.gitignore
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# poetry
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
102 |
+
#poetry.lock
|
103 |
+
|
104 |
+
# pdm
|
105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
106 |
+
#pdm.lock
|
107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
108 |
+
# in version control.
|
109 |
+
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
|
110 |
+
.pdm.toml
|
111 |
+
.pdm-python
|
112 |
+
.pdm-build/
|
113 |
+
|
114 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
115 |
+
__pypackages__/
|
116 |
+
|
117 |
+
# Celery stuff
|
118 |
+
celerybeat-schedule
|
119 |
+
celerybeat.pid
|
120 |
+
|
121 |
+
# SageMath parsed files
|
122 |
+
*.sage.py
|
123 |
+
|
124 |
+
# Environments
|
125 |
+
.env
|
126 |
+
.venv
|
127 |
+
env/
|
128 |
+
venv/
|
129 |
+
ENV/
|
130 |
+
env.bak/
|
131 |
+
venv.bak/
|
132 |
+
|
133 |
+
# Spyder project settings
|
134 |
+
.spyderproject
|
135 |
+
.spyproject
|
136 |
+
|
137 |
+
# Rope project settings
|
138 |
+
.ropeproject
|
139 |
+
|
140 |
+
# mkdocs documentation
|
141 |
+
/site
|
142 |
+
|
143 |
+
# mypy
|
144 |
+
.mypy_cache/
|
145 |
+
.dmypy.json
|
146 |
+
dmypy.json
|
147 |
+
|
148 |
+
# Pyre type checker
|
149 |
+
.pyre/
|
150 |
+
|
151 |
+
# pytype static type analyzer
|
152 |
+
.pytype/
|
153 |
+
|
154 |
+
# Cython debug symbols
|
155 |
+
cython_debug/
|
156 |
+
|
157 |
+
# PyCharm
|
158 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
159 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
160 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
161 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
162 |
+
#.idea/
|
163 |
+
|
164 |
+
*.wav
|
165 |
+
flagged/
|
app.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
from transformers import pipeline, AutoModelForQuestionAnswering, AutoTokenizer
|
4 |
+
from datasets import load_dataset
|
5 |
+
import torch
|
6 |
+
import soundfile as sf
|
7 |
+
from pdfminer.high_level import extract_text
|
8 |
+
from llama_cpp import Llama
|
9 |
+
|
10 |
+
|
11 |
+
# Check if MPS is available and set the device
|
12 |
+
if torch.backends.mps.is_available():
|
13 |
+
device = torch.device("mps")
|
14 |
+
print("Using MPS device")
|
15 |
+
else:
|
16 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
+
print(f"MPS not available, using {device}")
|
18 |
+
def toText(audio):
|
19 |
+
asr = pipeline(
|
20 |
+
"automatic-speech-recognition",
|
21 |
+
model="openai/whisper-tiny.en",
|
22 |
+
chunk_length_s=30,
|
23 |
+
device=device,
|
24 |
+
)
|
25 |
+
question = asr(audio, batch_size=8)["text"]
|
26 |
+
return question
|
27 |
+
|
28 |
+
|
29 |
+
def extract_answer(question, text):
|
30 |
+
# Load the LLaMA model
|
31 |
+
model_path="/Users/chandima/.cache/lm-studio/models/lmstudio-community/Llama-3.2-3B-Instruct-GGUF/Llama-3.2-3B-Instruct-Q3_K_L.gguf"
|
32 |
+
# Load the LLaMA model with MPS acceleration
|
33 |
+
llm = Llama(
|
34 |
+
model_path=model_path,
|
35 |
+
n_gpu_layers=-1, # Use all available layers for GPU acceleration
|
36 |
+
n_ctx=2048, # Adjust context size as needed
|
37 |
+
verbose=True, # Optional: for debugging
|
38 |
+
use_mlock=True, # Optional: for better memory management
|
39 |
+
n_threads=6, # Adjust based on your CPU
|
40 |
+
use_mmap=True, # Optional: for faster loading
|
41 |
+
)
|
42 |
+
|
43 |
+
# Use LLaMA to extract skills
|
44 |
+
prompt = f"""
|
45 |
+
Answer the question based on the Resume.
|
46 |
+
|
47 |
+
Question:
|
48 |
+
{question}:
|
49 |
+
|
50 |
+
Resume:
|
51 |
+
{text}
|
52 |
+
|
53 |
+
Answer:
|
54 |
+
"""
|
55 |
+
|
56 |
+
response = llm(prompt, max_tokens=800, stop=["Human:", "\n\n"])
|
57 |
+
answer = response['choices'][0]['text'].strip()
|
58 |
+
print(answer)
|
59 |
+
return answer
|
60 |
+
|
61 |
+
def toAudio(text):
|
62 |
+
synthesiser = pipeline("text-to-speech", "microsoft/speecht5_tts", device=device)
|
63 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
64 |
+
speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
65 |
+
speech = synthesiser(text, forward_params={"speaker_embeddings": speaker_embedding})
|
66 |
+
return speech
|
67 |
+
|
68 |
+
def clone(audio, file):
|
69 |
+
question = toText(audio=audio)
|
70 |
+
text = extract_text(file.name)
|
71 |
+
res = extract_answer(question, text)
|
72 |
+
print(res)
|
73 |
+
speech = toAudio(res)
|
74 |
+
sf.write("speech.wav", speech["audio"], samplerate=speech["sampling_rate"])
|
75 |
+
return "./speech.wav"
|
76 |
+
|
77 |
+
iface = gr.Interface(fn=clone,
|
78 |
+
inputs=[gr.Audio(type='filepath', label='Voice reference audio file'), gr.File(label="Resume")],
|
79 |
+
outputs=gr.Audio(label='Says'),
|
80 |
+
title='Voice Clone',
|
81 |
+
description="""
|
82 |
+
whisper
|
83 |
+
""",
|
84 |
+
theme = gr.themes.Base(primary_hue="teal",secondary_hue="teal",neutral_hue="slate"))
|
85 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
absl-py==2.1.0
|
2 |
+
aiofiles==23.2.1
|
3 |
+
aiohappyeyeballs==2.4.3
|
4 |
+
aiohttp==3.10.8
|
5 |
+
aiosignal==1.3.1
|
6 |
+
annotated-types==0.7.0
|
7 |
+
anyascii==0.3.2
|
8 |
+
anyio==4.6.0
|
9 |
+
async-timeout==4.0.3
|
10 |
+
attrs==24.2.0
|
11 |
+
audioread==3.0.1
|
12 |
+
babel==2.16.0
|
13 |
+
bangla==0.0.2
|
14 |
+
blinker==1.8.2
|
15 |
+
blis==0.7.11
|
16 |
+
bnnumerizer==0.0.2
|
17 |
+
bnunicodenormalizer==0.1.7
|
18 |
+
catalogue==2.0.10
|
19 |
+
certifi==2024.8.30
|
20 |
+
cffi==1.17.1
|
21 |
+
charset-normalizer==3.3.2
|
22 |
+
click==8.1.7
|
23 |
+
cloudpathlib==0.19.0
|
24 |
+
confection==0.1.5
|
25 |
+
contourpy==1.2.1
|
26 |
+
coqpit==0.0.17
|
27 |
+
cryptography==43.0.1
|
28 |
+
cycler==0.12.1
|
29 |
+
cymem==2.0.8
|
30 |
+
Cython==3.0.11
|
31 |
+
datasets==3.0.1
|
32 |
+
dateparser==1.1.8
|
33 |
+
decorator==5.1.1
|
34 |
+
dill==0.3.8
|
35 |
+
diskcache==5.6.3
|
36 |
+
docopt==0.6.2
|
37 |
+
einops==0.8.0
|
38 |
+
encodec==0.1.1
|
39 |
+
exceptiongroup==1.2.2
|
40 |
+
fastapi==0.115.0
|
41 |
+
ffmpy==0.4.0
|
42 |
+
filelock==3.16.1
|
43 |
+
Flask==3.0.3
|
44 |
+
fonttools==4.54.1
|
45 |
+
frozenlist==1.4.1
|
46 |
+
fsspec==2024.6.1
|
47 |
+
g2pkk==0.1.2
|
48 |
+
gradio==4.44.1
|
49 |
+
gradio_client==1.3.0
|
50 |
+
grpcio==1.66.2
|
51 |
+
gruut==2.2.3
|
52 |
+
gruut-ipa==0.13.0
|
53 |
+
gruut_lang_de==2.0.1
|
54 |
+
gruut_lang_en==2.0.1
|
55 |
+
gruut_lang_es==2.0.1
|
56 |
+
gruut_lang_fr==2.0.2
|
57 |
+
h11==0.14.0
|
58 |
+
hangul-romanize==0.1.0
|
59 |
+
httpcore==1.0.5
|
60 |
+
httpx==0.27.2
|
61 |
+
huggingface-hub==0.25.1
|
62 |
+
idna==3.10
|
63 |
+
importlib_resources==6.4.5
|
64 |
+
inflect==7.4.0
|
65 |
+
itsdangerous==2.2.0
|
66 |
+
jamo==0.4.1
|
67 |
+
jieba==0.42.1
|
68 |
+
Jinja2==3.1.4
|
69 |
+
joblib==1.4.2
|
70 |
+
jsonlines==1.2.0
|
71 |
+
kiwisolver==1.4.7
|
72 |
+
langcodes==3.4.1
|
73 |
+
language_data==1.2.0
|
74 |
+
lazy_loader==0.4
|
75 |
+
librosa==0.10.0
|
76 |
+
llama_cpp_python==0.3.1
|
77 |
+
llvmlite==0.43.0
|
78 |
+
marisa-trie==1.2.0
|
79 |
+
Markdown==3.7
|
80 |
+
markdown-it-py==3.0.0
|
81 |
+
MarkupSafe==2.1.5
|
82 |
+
matplotlib==3.8.4
|
83 |
+
mdurl==0.1.2
|
84 |
+
more-itertools==10.5.0
|
85 |
+
mpmath==1.3.0
|
86 |
+
msgpack==1.1.0
|
87 |
+
multidict==6.1.0
|
88 |
+
multiprocess==0.70.16
|
89 |
+
murmurhash==1.0.10
|
90 |
+
networkx==2.8.8
|
91 |
+
nltk==3.9.1
|
92 |
+
num2words==0.5.13
|
93 |
+
numba==0.60.0
|
94 |
+
numpy==1.22.0
|
95 |
+
orjson==3.10.7
|
96 |
+
packaging==24.1
|
97 |
+
pandas==1.5.3
|
98 |
+
pdfminer.six==20240706
|
99 |
+
pillow==10.4.0
|
100 |
+
platformdirs==4.3.6
|
101 |
+
pooch==1.8.2
|
102 |
+
preshed==3.0.9
|
103 |
+
protobuf==5.28.2
|
104 |
+
psutil==6.0.0
|
105 |
+
pyarrow==17.0.0
|
106 |
+
pycparser==2.22
|
107 |
+
pydantic==2.9.2
|
108 |
+
pydantic_core==2.23.4
|
109 |
+
pydub==0.25.1
|
110 |
+
Pygments==2.18.0
|
111 |
+
pynndescent==0.5.13
|
112 |
+
pyparsing==3.1.4
|
113 |
+
pypinyin==0.53.0
|
114 |
+
pysbd==0.3.4
|
115 |
+
python-crfsuite==0.9.10
|
116 |
+
python-dateutil==2.9.0.post0
|
117 |
+
python-multipart==0.0.12
|
118 |
+
pytz==2024.2
|
119 |
+
PyYAML==6.0.2
|
120 |
+
regex==2024.9.11
|
121 |
+
requests==2.32.3
|
122 |
+
rich==13.8.1
|
123 |
+
ruff==0.6.8
|
124 |
+
safetensors==0.4.5
|
125 |
+
scikit-learn==1.5.2
|
126 |
+
scipy==1.11.4
|
127 |
+
semantic-version==2.10.0
|
128 |
+
sentencepiece==0.2.0
|
129 |
+
shellingham==1.5.4
|
130 |
+
six==1.16.0
|
131 |
+
smart-open==7.0.4
|
132 |
+
sniffio==1.3.1
|
133 |
+
soundfile==0.12.1
|
134 |
+
soxr==0.5.0.post1
|
135 |
+
spacy==3.7.5
|
136 |
+
spacy-legacy==3.0.12
|
137 |
+
spacy-loggers==1.0.5
|
138 |
+
srsly==2.4.8
|
139 |
+
starlette==0.38.6
|
140 |
+
SudachiDict-core==20240716
|
141 |
+
SudachiPy==0.6.8
|
142 |
+
sympy==1.13.3
|
143 |
+
tensorboard==2.18.0
|
144 |
+
tensorboard-data-server==0.7.2
|
145 |
+
thinc==8.2.5
|
146 |
+
threadpoolctl==3.5.0
|
147 |
+
tokenizers==0.20.0
|
148 |
+
tomlkit==0.12.0
|
149 |
+
torch==2.4.1
|
150 |
+
torchaudio==2.4.1
|
151 |
+
tqdm==4.66.5
|
152 |
+
trainer==0.0.36
|
153 |
+
transformers==4.45.1
|
154 |
+
TTS==0.22.0
|
155 |
+
typeguard==4.3.0
|
156 |
+
typer==0.12.5
|
157 |
+
typing_extensions==4.12.2
|
158 |
+
tzlocal==5.2
|
159 |
+
umap-learn==0.5.6
|
160 |
+
Unidecode==1.3.8
|
161 |
+
urllib3==2.2.3
|
162 |
+
uvicorn==0.31.0
|
163 |
+
wasabi==1.1.3
|
164 |
+
weasel==0.4.1
|
165 |
+
websockets==12.0
|
166 |
+
Werkzeug==3.0.4
|
167 |
+
wrapt==1.16.0
|
168 |
+
xxhash==3.5.0
|
169 |
+
yarl==1.13.1
|
tts.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
from datasets import load_dataset
|
3 |
+
import soundfile as sf
|
4 |
+
import torch
|
5 |
+
|
6 |
+
synthesiser = pipeline("text-to-speech", "microsoft/speecht5_tts")
|
7 |
+
|
8 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
9 |
+
speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
10 |
+
# You can replace this embedding with your own as well.
|
11 |
+
|
12 |
+
speech = synthesiser("Hello, my dog is cooler than you!", forward_params={"speaker_embeddings": speaker_embedding})
|
13 |
+
|
14 |
+
sf.write("speech.wav", speech["audio"], samplerate=speech["sampling_rate"])
|
whisper.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import pipeline
|
3 |
+
from datasets import load_dataset
|
4 |
+
|
5 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
6 |
+
|
7 |
+
pipe = pipeline(
|
8 |
+
"automatic-speech-recognition",
|
9 |
+
model="openai/whisper-tiny.en",
|
10 |
+
chunk_length_s=30,
|
11 |
+
device=device,
|
12 |
+
)
|
13 |
+
|
14 |
+
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
15 |
+
sample = ds[0]["audio"]
|
16 |
+
|
17 |
+
prediction = pipe(sample.copy(), batch_size=8)["text"]
|
18 |
+
|
19 |
+
# we can also return timestamps for the predictions
|
20 |
+
prediction = pipe(sample.copy(), batch_size=8, return_timestamps=True)["chunks"]
|