import gradio as gr from transformers import pipeline from gtts import gTTS from pydub import AudioSegment #text to sppech function def text_to_speech(text): # Convert text to speech with a US accent using gTTS tts = gTTS(text=text, lang='en', tld='us', slow=False) tts.save('temp.mp3') # Load the audio file audio = AudioSegment.from_file('temp.mp3') # Adjust the speed to approximately 170 wpm playback_speed = 1.20 audio = audio.speedup(playback_speed=playback_speed) # Save and return the adjusted audio file final_filename = 'text_to_speech.mp3' audio.export(final_filename, format='mp3') return final_filename def process_files(): return (gr.update(interactive=True, elem_id='summary_button'), gr.update(interactive = True, elem_id = 'summarization_method') ) def get_summarization_method(option): return option def text_to_audio(text, model_name="facebook/fastspeech2-en-ljspeech"): # Initialize the TTS pipeline tts_pipeline = pipeline("text-to-speech", model=model_name) # Generate the audio from text audio = tts_pipeline(text) # Save the audio to a file audio_path = "output.wav" with open(audio_path, "wb") as file: file.write(audio["wav"]) return audio_path def generate_output(method, file): summary_text = summarize_file(method, file) audio_summary = text_to_speech(summary_text) return summary_text, audio_summary