import gradio as gr import os import torch from model import create_effnet_b2_model from timeit import default_timer as timer from typing import Dict, Tuple class_names = ['pizza', 'steak', 'sushi'] effnetb2, effnetb2_transforms = create_effnet_b2_model( num_classes=3) #load weigths effnetb2.load_state_dict( torch.load( f='09_pretrained_effnet_b2_feature_extractor_20%.pth', map_location=torch.device('cpu') ) ) #predict def predict(img) -> Tuple[Dict, float]: #start a timer start_time = timer() #transform input image img = effnetb2_transforms(img).unsqueeze(0) #set model to eval mode effnetb2.eval() with torch.inference_mode(): pred_probs = torch.softmax(effnetb2(img), dim=1) pred_labels_and_probs = {class_names[i] :float(pred_probs[0,i]) for i in \ range(len(class_names))} end_time = timer() pred_time = round(end_time - start_time, 4) return pred_labels_and_probs, pred_time examples_list = [['examples/' + example] for example in os.listdir('examples')] examples_list title = 'foodvision mini' description = 'effnet feature extractor for image classification' article = 'course type-along' demo = gr.Interface(fn=predict, inputs=gr.Image(type='pil'), outputs = [gr.Label(num_top_classes=3,label='predictions'), gr.Number(label='Prediction time(s)')], examples=example_list, title=title, description=description, article=article)