import os import warnings os.environ['TF_ENABLE_ONEDNN_OPTS']=str(0) warnings.filterwarnings('ignore') #import pandas as pd import numpy as np from deepface import DeepFace from db import create_db, get_student_row from helper_fns import binary_to_pil, extract_faces def verify_student(db_path, last_name, matric_no, input_image): data = get_student_row(db_path, last_name, matric_no) if data is not None: binary_image = data['image'] else: raise ValueError('No student having last name {last_name} and matric no: {matric_no} exists in this database.') actual_image =np.array(binary_to_pil(binary_image)) webcam_image = input_image if webcam_image is None: raise ValueError(f'No image') else: print('Received image') print(type(webcam_image)) results = DeepFace.verify(#webcam_image, actual_image, actual_image, model_name='Facenet', detector_backend="retinaface", distance_metric="cosine", enforce_detection=True, anti_spoofing=True, align=True, normalization="Facenet") result = results['verified'] if results['verified'] == True: result = f"Verification check complete! Successfully verified student: {data['last_name']} {data['first_name']} with matriculation number {data['matric_no']}" else: result = f"Verification check complete! You are not student {data['last_name']} {data['first_name']} with matriculation number {data['matric_no']}" cropped_input_image, cropped_returned_image = extract_faces(webcam_image, actual_image, results) return result, cropped_input_image, cropped_returned_image, actual_image def main(last_name, matric_no, input_image): #df = pd.read_csv('students_df.csv') db_path = 'students_database.db' #create_db(db_path, df) result, cropped_input_image, cropped_returned_image, actual_image = verify_student(db_path, last_name, matric_no, input_image) #os.remove('students_database.db') return result, cropped_input_image, cropped_returned_image, actual_image if __name__ == '__main__': main()