Spaces:
Sleeping
Sleeping
File size: 2,154 Bytes
fcd5d71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import gradio as gr
from main import main
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
last_name = gr.Textbox(label='last name',
interactive=True,
value='ABOLADE')
matric_no = gr.Textbox(label='Matric number',
interactive=True,
value='CPE/18/6627')
with gr.Column():
input_image = gr.Image(type='numpy',
image_mode='RGB',
sources='webcam',
interactive=True,
height=640,
width=640,
label='Webcam Image')
cropped_input_image = gr.Image(type='pil',
image_mode='RGB',
interactive=False,
height=640,
width=640,
label='Detected face in webcam image')
with gr.Column(scale=1):
returned_image = gr.Image(type='pil',
image_mode='RGB',
interactive=False,
height=640,
width=640,
label='Image in database')
cropped_returned_image = gr.Image(type='pil',
image_mode='RGB',
interactive=False,
height=640,
width=640,
label='Face in image in database')
submit_button = gr.Button(value='Submit')
result = gr.Textbox(label='Result',
interactive=False)
submit_button.click(fn = main,
inputs=[last_name, matric_no, input_image],
outputs=[result, cropped_input_image,
cropped_returned_image, returned_image,
]
)
if __name__ == '__main__':
demo.launch(share=False)
|