import gradio as gr import transformers # import tokenizers import torch from transformers import pipeline, set_seed from transformers import GPT2Model, GPT2Config, GPT2LMHeadModel, AutoModel from transformers import BertTokenizerFast, BertTokenizer # https://huggingface.co/docs/hub/spaces-sdks-gradio # tokenizer_bert = BertTokenizer.from_pretrained('bert-base-chinese', # additional_special_tokens=["","","","",""], # pad_token='', max_len=512) # configuration = GPT2Config(vocab_size=25000, n_layer=8) # model = GPT2LMHeadModel(config=configuration) # path2pytorch_model = "/home/binxuwang/Datasets/ancChn_L8_LB_cont_output/checkpoint-100000/pytorch_model.bin" # model.load_state_dict(torch.load(path2pytorch_model)) # model.from_pretrained("binxu/Ziyue-GPT2") #%% model = GPT2LMHeadModel.from_pretrained("binxu/Ziyue-GPT2") generator = pipeline('text-generation', model=model, tokenizer='bert-base-chinese') def generate(prompt, num_beams, max_length, repetition_penalty, seed): if seed is not None: torch.manual_seed(seed) outputs = generator(prompt, max_length=max_length, num_return_sequences=5, num_beams=num_beams, repetition_penalty=repetition_penalty) output_texts = [output['generated_text'] for output in outputs] output_all = "\n\n".join(output_texts) return output_all examples = ["子曰", "子墨子曰", "孟子", "秦王", "子路问仁", "孙行者笑道", "牛魔王与红孩儿", "鲲鹏", "宝玉道", "黛玉行至贾母处"] iface = gr.Interface(fn=generate, inputs=[gr.inputs.Textbox(lines=2, label="Prompt"), gr.inputs.Slider(minimum=1, maximum=20, default=10, label="Number of beams"), gr.inputs.Slider(minimum=10, maximum=100, default=50, label="Max length"), gr.inputs.Slider(minimum=1, maximum=5, default=1.5, label="Repetition penalty"), gr.inputs.Number(default=0, label="Seed")], outputs=gr.outputs.Textbox(label="Generated Text"), examples=examples) iface.launch()