lvwerra's picture
lvwerra HF staff
Update app.py
df31c00
raw
history blame
3.98 kB
import json
import os
import shutil
import gradio as gr
from huggingface_hub import Repository
from text_generation import Client
from share_btn import community_icon_html, loading_icon_html, share_js, share_btn_css
HF_TOKEN = os.environ.get("HF_TOKEN", None)
API_URL = os.environ.get("API_URL")
theme = gr.themes.Monochrome(
primary_hue="indigo",
secondary_hue="blue",
neutral_hue="slate",
radius_size=gr.themes.sizes.radius_sm,
font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"],
)
client = Client(
API_URL,
#headers={"Authorization": f"Bearer {HF_TOKEN}"},
)
def generate(prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
truncate=999,
seed=42,
stop_sequences=["</s>"],
)
stream = client.generate_stream(
prompt,
**generate_kwargs,
)
output = prompt
for response in stream:
output += response.token.text
yield output
return output
examples = [
"def hello_world():",
]
def process_example(args):
for x in generate(args):
pass
return x
css = ".generating {visibility: hidden}" + share_btn_css
with gr.Blocks(theme=theme, analytics_enabled=False, css=css) as demo:
with gr.Column():
gr.Markdown(
""" # BigCode - Playground
"""
)
with gr.Row():
with gr.Column(scale=3):
instruction = gr.Textbox(placeholder="Enter your prompt here", label="Prompt", elem_id="q-input")
with gr.Box():
output = gr.Code(elem_id="q-output")
submit = gr.Button("Generate", variant="primary")
gr.Examples(
examples=examples,
inputs=[instruction],
cache_examples=False,
fn=process_example,
outputs=[output],
)
with gr.Column(scale=1):
temperature = gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=2.0,
step=0.1,
interactive=True,
info="Higher values produce more diverse outputs",
)
max_new_tokens = gr.Slider(
label="Max new tokens",
value=256,
minimum=0,
maximum=512,
step=4,
interactive=True,
info="The maximum numbers of new tokens",
)
top_p = gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
)
repetition_penalty = gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
submit.click(generate, inputs=[instruction, temperature, max_new_tokens, top_p, repetition_penalty], outputs=[output])
instruction.submit(generate, inputs=[instruction, temperature, max_new_tokens, top_p, repetition_penalty], outputs=[output])
demo.queue(concurrency_count=16).launch(debug=True)