File size: 4,074 Bytes
9255bb8
 
 
 
 
 
 
 
 
 
b1f91f1
9255bb8
 
 
 
 
 
 
 
 
 
 
 
 
b1f91f1
9255bb8
 
 
9ded88b
9255bb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1f91f1
9255bb8
 
 
040a3f3
9255bb8
 
 
 
 
 
 
b1f91f1
da6c800
d7c0687
 
9255bb8
 
 
 
 
 
 
 
 
 
 
 
 
b1f91f1
 
9255bb8
 
 
b1f91f1
9255bb8
 
de17bac
9255bb8
 
 
 
 
 
 
 
 
 
 
 
 
7926189
9255bb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ded88b
9255bb8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import json
import os
import shutil

import gradio as gr
from huggingface_hub import Repository
from text_generation import Client

from share_btn import community_icon_html, loading_icon_html, share_js, share_btn_css

HF_TOKEN = os.environ.get("HF_TOKEN", None)
API_URL = os.environ.get("API_URL")


theme = gr.themes.Monochrome(
    primary_hue="indigo",
    secondary_hue="blue",
    neutral_hue="slate",
    radius_size=gr.themes.sizes.radius_sm,
    font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"],
)

client = Client(
    API_URL,
    #headers={"Authorization": f"Bearer {HF_TOKEN}"},
)


def generate(prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0):

    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        truncate=999,
        seed=42,
        stop_sequences=["</s>"],
    )

    stream = client.generate_stream(
        prompt,
        **generate_kwargs,
    )

    output = prompt
    for response in stream:
        output += response.token.text
        yield output
    return output


examples = [
    "def hello_world():",
    "def fibonacci(n):",
    "class TransformerDecoder(nn.Module):",
    "class ComplexNumbers:"
]


def process_example(args):
    for x in generate(args):
        pass
    return x

css = ".generating {visibility: hidden}" + share_btn_css

with gr.Blocks(theme=theme, analytics_enabled=False, css=css) as demo:
    with gr.Column():
        gr.Markdown(
            """ # BigCode - Playground
            """
        )
        with gr.Row():
            with gr.Column(scale=3):
                instruction = gr.Textbox(placeholder="Enter your prompt here", label="Prompt", elem_id="q-input")

                with gr.Box():
                    output = gr.Code(elem_id="q-output")
                submit = gr.Button("Generate", variant="primary")
                gr.Examples(
                    examples=examples,
                    inputs=[instruction],
                    cache_examples=False,
                    fn=process_example,
                    outputs=[output],
                )

            with gr.Column(scale=1):
                
                temperature = gr.Slider(
                    label="Temperature",
                    value=0.2,
                    minimum=0.0,
                    maximum=2.0,
                    step=0.1,
                    interactive=True,
                    info="Higher values produce more diverse outputs",
                )
                max_new_tokens = gr.Slider(
                    label="Max new tokens",
                    value=256,
                    minimum=0,
                    maximum=512,
                    step=4,
                    interactive=True,
                    info="The maximum numbers of new tokens",
                )
                top_p = gr.Slider(
                    label="Top-p (nucleus sampling)",
                    value=0.90,
                    minimum=0.0,
                    maximum=1,
                    step=0.05,
                    interactive=True,
                    info="Higher values sample more low-probability tokens",
                )
                repetition_penalty = gr.Slider(
                    label="Repetition penalty",
                    value=1.2,
                    minimum=1.0,
                    maximum=2.0,
                    step=0.05,
                    interactive=True,
                    info="Penalize repeated tokens",
                )

    submit.click(generate, inputs=[instruction, temperature, max_new_tokens, top_p, repetition_penalty], outputs=[output])
    instruction.submit(generate, inputs=[instruction, temperature, max_new_tokens, top_p, repetition_penalty], outputs=[output])

demo.queue(concurrency_count=16).launch(debug=True)