Update app.py
Browse files
app.py
CHANGED
@@ -1,60 +1,195 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
-
|
5 |
-
from transformers import
|
6 |
-
VitsModel,
|
7 |
-
VitsTokenizer,
|
8 |
-
pipeline
|
9 |
-
)
|
10 |
|
11 |
|
12 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
13 |
|
14 |
# load speech translation checkpoint
|
15 |
-
asr_pipe = pipeline(
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
model =
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
return outputs["text"]
|
32 |
|
33 |
|
34 |
-
def
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
37 |
|
38 |
-
|
39 |
-
|
40 |
|
41 |
-
with torch.no_grad():
|
42 |
-
outputs = model(input_ids)
|
43 |
|
44 |
-
|
|
|
|
|
|
|
45 |
return speech.cpu()
|
46 |
|
47 |
|
48 |
def speech_to_speech_translation(audio):
|
49 |
-
translated_text =
|
50 |
-
|
|
|
|
|
|
|
51 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
52 |
-
return 16000, synthesised_speech
|
|
|
53 |
|
54 |
title = "Cascaded STST"
|
55 |
description = """
|
56 |
-
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in
|
57 |
-
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
|
58 |
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
|
59 |
"""
|
60 |
|
@@ -63,14 +198,15 @@ demo = gr.Blocks()
|
|
63 |
mic_translate = gr.Interface(
|
64 |
fn=speech_to_speech_translation,
|
65 |
inputs=gr.Audio(source="microphone", type="filepath"),
|
66 |
-
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
67 |
title=title,
|
68 |
description=description,
|
69 |
)
|
|
|
70 |
file_translate = gr.Interface(
|
71 |
fn=speech_to_speech_translation,
|
72 |
inputs=gr.Audio(source="upload", type="filepath"),
|
73 |
-
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
74 |
examples=[["./example.wav"]],
|
75 |
title=title,
|
76 |
description=description,
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
+
from datasets import load_dataset
|
5 |
+
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
|
|
|
|
|
|
|
|
6 |
|
7 |
|
8 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
9 |
|
10 |
# load speech translation checkpoint
|
11 |
+
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large-v2", device=device)
|
12 |
+
greek_translation_pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-en-el")
|
13 |
+
|
14 |
+
# load text-to-speech checkpoint and speaker embeddings
|
15 |
+
model_id = "microsoft/speecht5_tts" # update with your model id
|
16 |
+
# pipe = pipeline("automatic-speech-recognition", model=model_id)
|
17 |
+
model = SpeechT5ForTextToSpeech.from_pretrained(model_id)
|
18 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
19 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
20 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[7440]["xvector"]).unsqueeze(0)
|
21 |
+
|
22 |
+
processor = SpeechT5Processor.from_pretrained(model_id)
|
23 |
+
|
24 |
+
model_id_greek = "Sandiago21/speecht5_finetuned_google_fleurs_greek"
|
25 |
+
model_greek = SpeechT5ForTextToSpeech.from_pretrained(model_id_greek)
|
26 |
+
processor_greek = SpeechT5Processor.from_pretrained(model_id_greek)
|
27 |
+
|
28 |
+
replacements = [
|
29 |
+
("á", "a"),
|
30 |
+
("â", "a"),
|
31 |
+
("ã", "a"),
|
32 |
+
("í", "i"),
|
33 |
+
("á", "a"),
|
34 |
+
("í", "i"),
|
35 |
+
("ñ", "n"),
|
36 |
+
("ó", "o"),
|
37 |
+
("ú", "u"),
|
38 |
+
("ü", "u"),
|
39 |
+
("á", "a"),
|
40 |
+
("ç", "c"),
|
41 |
+
("è", "e"),
|
42 |
+
("ì", "i"),
|
43 |
+
("í", "i"),
|
44 |
+
("ò", "o"),
|
45 |
+
("ó", "o"),
|
46 |
+
("ù", "u"),
|
47 |
+
("ú", "u"),
|
48 |
+
("š", "s"),
|
49 |
+
("ï", "i"),
|
50 |
+
("à", "a"),
|
51 |
+
("â", "a"),
|
52 |
+
("ç", "c"),
|
53 |
+
("è", "e"),
|
54 |
+
("ë", "e"),
|
55 |
+
("î", "i"),
|
56 |
+
("ï", "i"),
|
57 |
+
("ô", "o"),
|
58 |
+
("ù", "u"),
|
59 |
+
("û", "u"),
|
60 |
+
("ü", "u"),
|
61 |
+
("ου", "u"),
|
62 |
+
("αυ", "af"),
|
63 |
+
("ευ", "ef"),
|
64 |
+
("ει", "i"),
|
65 |
+
("οι", "i"),
|
66 |
+
("αι", "e"),
|
67 |
+
("ού", "u"),
|
68 |
+
("εί", "i"),
|
69 |
+
("οί", "i"),
|
70 |
+
("αί", "e"),
|
71 |
+
("Ά", "A"),
|
72 |
+
("Έ", "E"),
|
73 |
+
("Ή", "H"),
|
74 |
+
("Ί", "I"),
|
75 |
+
("Ό", "O"),
|
76 |
+
("Ύ", "Y"),
|
77 |
+
("Ώ", "O"),
|
78 |
+
("ΐ", "i"),
|
79 |
+
("Α", "A"),
|
80 |
+
("Β", "B"),
|
81 |
+
("Γ", "G"),
|
82 |
+
("Δ", "L"),
|
83 |
+
("Ε", "Ε"),
|
84 |
+
("Ζ", "Z"),
|
85 |
+
("Η", "I"),
|
86 |
+
("Θ", "Th"),
|
87 |
+
("Ι", "I"),
|
88 |
+
("Κ", "K"),
|
89 |
+
("Λ", "L"),
|
90 |
+
("Μ", "M"),
|
91 |
+
("Ν", "N"),
|
92 |
+
("Ξ", "Ks"),
|
93 |
+
("Ο", "O"),
|
94 |
+
("Π", "P"),
|
95 |
+
("Ρ", "R"),
|
96 |
+
("Σ", "S"),
|
97 |
+
("Τ", "T"),
|
98 |
+
("Υ", "Y"),
|
99 |
+
("Φ", "F"),
|
100 |
+
("Χ", "X"),
|
101 |
+
("Ω", "O"),
|
102 |
+
("ά", "a"),
|
103 |
+
("έ", "e"),
|
104 |
+
("ή", "i"),
|
105 |
+
("ί", "i"),
|
106 |
+
("α", "a"),
|
107 |
+
("β", "v"),
|
108 |
+
("γ", "g"),
|
109 |
+
("δ", "d"),
|
110 |
+
("ε", "e"),
|
111 |
+
("ζ", "z"),
|
112 |
+
("η", "i"),
|
113 |
+
("θ", "th"),
|
114 |
+
("ι", "i"),
|
115 |
+
("κ", "k"),
|
116 |
+
("λ", "l"),
|
117 |
+
("μ", "m"),
|
118 |
+
("ν", "n"),
|
119 |
+
("ξ", "ks"),
|
120 |
+
("ο", "o"),
|
121 |
+
("π", "p"),
|
122 |
+
("ρ", "r"),
|
123 |
+
("ς", "s"),
|
124 |
+
("σ", "s"),
|
125 |
+
("τ", "t"),
|
126 |
+
("υ", "i"),
|
127 |
+
("φ", "f"),
|
128 |
+
("χ", "h"),
|
129 |
+
("ψ", "ps"),
|
130 |
+
("ω", "o"),
|
131 |
+
("ϊ", "i"),
|
132 |
+
("ϋ", "i"),
|
133 |
+
("ό", "o"),
|
134 |
+
("ύ", "i"),
|
135 |
+
("ώ", "o"),
|
136 |
+
("í", "i"),
|
137 |
+
("õ", "o"),
|
138 |
+
("Ε", "E"),
|
139 |
+
("Ψ", "Ps"),
|
140 |
+
]
|
141 |
+
|
142 |
+
def cleanup_text(text):
|
143 |
+
for src, dst in replacements:
|
144 |
+
text = text.replace(src, dst)
|
145 |
+
return text
|
146 |
+
|
147 |
+
|
148 |
+
def synthesize_speech(text):
|
149 |
+
text = cleanup_text(text)
|
150 |
+
inputs = processor(text=text, return_tensors="pt")
|
151 |
+
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
152 |
+
|
153 |
+
return gr.Audio.update(value=(16000, speech.cpu().numpy()))
|
154 |
+
|
155 |
+
|
156 |
+
def translate_to_english(audio):
|
157 |
+
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate", "language": "english"})
|
158 |
return outputs["text"]
|
159 |
|
160 |
|
161 |
+
def synthesise_from_english(text):
|
162 |
+
text = cleanup_text(text)
|
163 |
+
inputs = processor(text=text, return_tensors="pt")
|
164 |
+
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
165 |
+
return speech.cpu().numpy()
|
166 |
+
|
167 |
|
168 |
+
def translate_from_english_to_greek(text):
|
169 |
+
return greek_translation_pipe(text)[0]["translation_text"]
|
170 |
|
|
|
|
|
171 |
|
172 |
+
def synthesise_from_greek(text):
|
173 |
+
text = cleanup_text(text)
|
174 |
+
inputs = processor_greek(text=text, return_tensors="pt")
|
175 |
+
speech = model_greek.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
176 |
return speech.cpu()
|
177 |
|
178 |
|
179 |
def speech_to_speech_translation(audio):
|
180 |
+
translated_text = translate_to_english(audio)
|
181 |
+
translated_text = translate_from_english_to_greek(translated_text)
|
182 |
+
# synthesised_speech = synthesise_from_english(translated_text)
|
183 |
+
# translated_text = translate_from_english_to_greek(synthesised_speech)
|
184 |
+
synthesised_speech = synthesise_from_greek(translated_text)
|
185 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
186 |
+
return ((16000, synthesised_speech), translated_text)
|
187 |
+
|
188 |
|
189 |
title = "Cascaded STST"
|
190 |
description = """
|
191 |
+
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Greek. Demo uses OpenAI's [Whisper Large v2](https://huggingface.co/openai/whisper-large-v2) model for speech translation, and [Sandiago21/speecht5_finetuned_google_fleurs_greek](https://huggingface.co/Sandiago21/speecht5_finetuned_google_fleurs_greek) checkpoint for text-to-speech, which is based on Microsoft's
|
192 |
+
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech, fine-tuned in Greek Audio dataset:
|
193 |
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
|
194 |
"""
|
195 |
|
|
|
198 |
mic_translate = gr.Interface(
|
199 |
fn=speech_to_speech_translation,
|
200 |
inputs=gr.Audio(source="microphone", type="filepath"),
|
201 |
+
outputs=[gr.Audio(label="Generated Speech", type="numpy"), gr.outputs.Textbox()],
|
202 |
title=title,
|
203 |
description=description,
|
204 |
)
|
205 |
+
|
206 |
file_translate = gr.Interface(
|
207 |
fn=speech_to_speech_translation,
|
208 |
inputs=gr.Audio(source="upload", type="filepath"),
|
209 |
+
outputs=[gr.Audio(label="Generated Speech", type="numpy"), gr.outputs.Textbox()],
|
210 |
examples=[["./example.wav"]],
|
211 |
title=title,
|
212 |
description=description,
|