benjipeng commited on
Commit
5cdac43
1 Parent(s): dbfdf1a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +107 -16
app.py CHANGED
@@ -1,34 +1,128 @@
1
  import gradio as gr
2
  import numpy as np
3
  import torch
4
- from datasets import load_dataset
5
 
6
- from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
 
 
 
 
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
11
  # load speech translation checkpoint
12
- asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
- # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
 
 
 
 
 
 
16
 
17
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
- vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
 
 
 
 
19
 
20
- embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
- speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
 
23
 
24
  def translate(audio):
25
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
 
 
 
 
26
  return outputs["text"]
27
 
28
 
29
  def synthesise(text):
30
- inputs = processor(text=text, return_tensors="pt")
31
- speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
 
 
 
 
 
 
 
 
32
  return speech.cpu()
33
 
34
 
@@ -38,12 +132,10 @@ def speech_to_speech_translation(audio):
38
  synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
39
  return 16000, synthesised_speech
40
 
41
-
42
  title = "Cascaded STST"
43
  description = """
44
  Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
45
  [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
46
-
47
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
48
  """
49
 
@@ -56,7 +148,6 @@ mic_translate = gr.Interface(
56
  title=title,
57
  description=description,
58
  )
59
-
60
  file_translate = gr.Interface(
61
  fn=speech_to_speech_translation,
62
  inputs=gr.Audio(source="upload", type="filepath"),
@@ -69,4 +160,4 @@ file_translate = gr.Interface(
69
  with demo:
70
  gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
71
 
72
- demo.launch()
 
1
  import gradio as gr
2
  import numpy as np
3
  import torch
 
4
 
5
+ from transformers import (
6
+ VitsModel,
7
+ VitsTokenizer,
8
+ pipeline
9
+ )
10
 
11
 
12
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
13
 
14
  # load speech translation checkpoint
15
+ asr_pipe = pipeline(
16
+ "automatic-speech-recognition",
17
+ model="openai/whisper-base",
18
+ device=device
19
+ )
20
+
21
+ model = VitsModel.from_pretrained("Matthijs/mms-tts-deu")
22
+ tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-deu")
23
+
24
+
25
+ def translate(audio):
26
+ outputs = asr_pipe(
27
+ audio,
28
+ max_new_tokens=256,
29
+ generate_kwargs={"task": "transcribe", "language": "de"}
30
+ )
31
+ return outputs["text"]
32
+
33
+
34
+ def synthesise(text):
35
+ if len(text.strip()) == 0:
36
+ return (16000, np.zeros(0).astype(np.int16))
37
+
38
+ inputs = tokenizer(text, return_tensors="pt")
39
+ input_ids = inputs["input_ids"]
40
+
41
+ with torch.no_grad():
42
+ outputs = model(input_ids)
43
+
44
+ speech = outputs.audio[0]
45
+ return speech.cpu()
46
+
47
+
48
+ def speech_to_speech_translation(audio):
49
+ translated_text = translate(audio)
50
+ synthesised_speech = synthesise(translated_text)
51
+ synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
52
+ return 16000, synthesised_speech
53
+
54
+ title = "Cascaded STST"
55
+ description = """
56
+ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
57
+ [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
58
+ ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
59
+ """
60
+
61
+ demo = gr.Blocks()
62
+
63
+ mic_translate = gr.Interface(
64
+ fn=speech_to_speech_translation,
65
+ inputs=gr.Audio(source="microphone", type="filepath"),
66
+ outputs=gr.Audio(label="Generated Speech", type="numpy"),
67
+ title=title,
68
+ description=description,
69
+ )
70
+ file_translate = gr.Interface(
71
+ fn=speech_to_speech_translation,
72
+ inputs=gr.Audio(source="upload", type="filepath"),
73
+ outputs=gr.Audio(label="Generated Speech", type="numpy"),
74
+ examples=[["./example.wav"]],
75
+ title=title,
76
+ description=description,
77
+ )
78
+
79
+ with demo:
80
+ gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
81
+
82
+ demo.launch()import gradio as gr
83
+ import numpy as np
84
+ import torch
85
 
86
+ from transformers import (
87
+ VitsModel,
88
+ VitsTokenizer,
89
+ pipeline
90
+ )
91
+
92
+
93
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
94
 
95
+ # load speech translation checkpoint
96
+ asr_pipe = pipeline(
97
+ "automatic-speech-recognition",
98
+ model="openai/whisper-base",
99
+ device=device
100
+ )
101
 
102
+ model = VitsModel.from_pretrained("Matthijs/mms-tts-deu")
103
+ tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-deu")
104
 
105
 
106
  def translate(audio):
107
+ outputs = asr_pipe(
108
+ audio,
109
+ max_new_tokens=256,
110
+ generate_kwargs={"task": "transcribe", "language": "de"}
111
+ )
112
  return outputs["text"]
113
 
114
 
115
  def synthesise(text):
116
+ if len(text.strip()) == 0:
117
+ return (16000, np.zeros(0).astype(np.int16))
118
+
119
+ inputs = tokenizer(text, return_tensors="pt")
120
+ input_ids = inputs["input_ids"]
121
+
122
+ with torch.no_grad():
123
+ outputs = model(input_ids)
124
+
125
+ speech = outputs.audio[0]
126
  return speech.cpu()
127
 
128
 
 
132
  synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
133
  return 16000, synthesised_speech
134
 
 
135
  title = "Cascaded STST"
136
  description = """
137
  Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
138
  [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
 
139
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
140
  """
141
 
 
148
  title=title,
149
  description=description,
150
  )
 
151
  file_translate = gr.Interface(
152
  fn=speech_to_speech_translation,
153
  inputs=gr.Audio(source="upload", type="filepath"),
 
160
  with demo:
161
  gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
162
 
163
+ demo.launch()