Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,34 +1,57 @@
|
|
1 |
-
"""Streamlit app for Presidio."""
|
2 |
|
3 |
-
|
4 |
-
from json import JSONEncoder
|
5 |
-
from annotated_text import annotated_text
|
6 |
-
import pandas as pd
|
7 |
-
import streamlit as st
|
8 |
-
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry
|
9 |
-
from presidio_anonymizer import AnonymizerEngine
|
10 |
-
|
11 |
-
from flair_recognizer import FlairRecognizer
|
12 |
|
13 |
import spacy
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# Helper methods
|
17 |
@st.cache(allow_output_mutation=True)
|
18 |
def analyzer_engine():
|
19 |
"""Return AnalyzerEngine."""
|
20 |
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
registry = RecognizerRegistry()
|
24 |
-
|
25 |
-
registry.load_predefined_recognizers()
|
|
|
|
|
26 |
registry.remove_recognizer("SpacyRecognizer")
|
27 |
-
|
28 |
-
analyzer = AnalyzerEngine(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
return analyzer
|
30 |
|
31 |
-
|
32 |
@st.cache(allow_output_mutation=True)
|
33 |
def anonymizer_engine():
|
34 |
"""Return AnonymizerEngine."""
|
@@ -49,10 +72,12 @@ def analyze(**kwargs):
|
|
49 |
|
50 |
def anonymize(text, analyze_results):
|
51 |
"""Anonymize identified input using Presidio Abonymizer."""
|
52 |
-
|
|
|
53 |
res = anonymizer_engine().anonymize(text, analyze_results)
|
54 |
return res.text
|
55 |
|
|
|
56 |
def annotate(text, st_analyze_results, st_entities):
|
57 |
tokens = []
|
58 |
# sort by start index
|
@@ -72,12 +97,14 @@ def annotate(text, st_analyze_results, st_entities):
|
|
72 |
tokens.append(text[res.end:])
|
73 |
return tokens
|
74 |
|
75 |
-
|
|
|
76 |
|
77 |
# Side bar
|
78 |
st.sidebar.markdown(
|
79 |
-
"""
|
80 |
-
Detect and anonymize PII in text using an [NLP model](https://huggingface.co/beki/en_spacy_pii_distilbert) trained on protocol
|
|
|
81 |
"""
|
82 |
)
|
83 |
|
@@ -91,7 +118,8 @@ st_threshold = st.sidebar.slider(
|
|
91 |
label="Acceptance threshold", min_value=0.0, max_value=1.0, value=0.35
|
92 |
)
|
93 |
|
94 |
-
st_return_decision_process = st.sidebar.checkbox(
|
|
|
95 |
|
96 |
st.sidebar.info(
|
97 |
"Privy is an open source framework for synthetic data generation in protocol trace formats (json, sql, html etc). Presidio is an open source framework for PII detection and anonymization. "
|
@@ -100,42 +128,49 @@ st.sidebar.info(
|
|
100 |
|
101 |
|
102 |
# Main panel
|
103 |
-
analyzer_load_state = st.info(
|
|
|
104 |
engine = analyzer_engine()
|
105 |
analyzer_load_state.empty()
|
106 |
|
107 |
|
108 |
st_text = st.text_area(
|
109 |
label="Type in some text",
|
110 |
-
value=
|
111 |
-
"SELECT shipping FROM users WHERE shipping = '201 Thayer St Providence RI 02912'"
|
112 |
"\n\n"
|
113 |
"{user: Willie Porter, ip: 192.168.2.80, email: [email protected]}",
|
114 |
height=200,
|
115 |
)
|
116 |
|
|
|
|
|
|
|
|
|
|
|
117 |
# After
|
118 |
st.subheader("Analyzed")
|
119 |
with st.spinner("Analyzing..."):
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
# vertical space
|
132 |
st.text("")
|
133 |
-
|
134 |
st.subheader("Anonymized")
|
135 |
|
136 |
with st.spinner("Anonymizing..."):
|
137 |
-
|
138 |
-
|
|
|
|
|
139 |
|
140 |
# table result
|
141 |
st.subheader("Detailed Findings")
|
@@ -155,11 +190,14 @@ if st_analyze_results:
|
|
155 |
)
|
156 |
|
157 |
st.dataframe(df, width=1000)
|
158 |
-
# table result
|
159 |
else:
|
160 |
st.text("No findings")
|
161 |
|
|
|
|
|
162 |
# json result
|
|
|
|
|
163 |
class ToDictListEncoder(JSONEncoder):
|
164 |
"""Encode dict to json."""
|
165 |
|
|
|
|
|
1 |
|
2 |
+
"""Streamlit app for Presidio + Privy-trained PII models."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
import spacy
|
5 |
+
from spacy_recognizer import CustomSpacyRecognizer
|
6 |
+
from presidio_analyzer.nlp_engine import NlpEngineProvider
|
7 |
+
from presidio_anonymizer import AnonymizerEngine
|
8 |
+
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry
|
9 |
+
import pandas as pd
|
10 |
+
from annotated_text import annotated_text
|
11 |
+
from json import JSONEncoder
|
12 |
+
import json
|
13 |
+
import warnings
|
14 |
+
import streamlit as st
|
15 |
+
import os
|
16 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
17 |
+
warnings.filterwarnings('ignore')
|
18 |
+
# from flair_recognizer import FlairRecognizer
|
19 |
|
20 |
# Helper methods
|
21 |
@st.cache(allow_output_mutation=True)
|
22 |
def analyzer_engine():
|
23 |
"""Return AnalyzerEngine."""
|
24 |
|
25 |
+
spacy_recognizer = CustomSpacyRecognizer()
|
26 |
+
|
27 |
+
configuration = {
|
28 |
+
"nlp_engine_name": "spacy",
|
29 |
+
"models": [
|
30 |
+
{"lang_code": "en", "model_name": "en_spacy_pii_distilbert"}],
|
31 |
+
}
|
32 |
+
|
33 |
+
# Create NLP engine based on configuration
|
34 |
+
provider = NlpEngineProvider(nlp_configuration=configuration)
|
35 |
+
nlp_engine = provider.create_engine()
|
36 |
+
|
37 |
registry = RecognizerRegistry()
|
38 |
+
# add rule-based recognizers
|
39 |
+
registry.load_predefined_recognizers(nlp_engine=nlp_engine)
|
40 |
+
registry.add_recognizer(spacy_recognizer)
|
41 |
+
# remove the nlp engine we passed, to use custom label mappings
|
42 |
registry.remove_recognizer("SpacyRecognizer")
|
43 |
+
|
44 |
+
analyzer = AnalyzerEngine(nlp_engine=nlp_engine,
|
45 |
+
registry=registry, supported_languages=["en"])
|
46 |
+
|
47 |
+
# uncomment for flair-based NLP recognizer
|
48 |
+
# flair_recognizer = FlairRecognizer()
|
49 |
+
# registry.load_predefined_recognizers()
|
50 |
+
# registry.add_recognizer(flair_recognizer)
|
51 |
+
# analyzer = AnalyzerEngine(registry=registry, supported_languages=["en"])
|
52 |
return analyzer
|
53 |
|
54 |
+
|
55 |
@st.cache(allow_output_mutation=True)
|
56 |
def anonymizer_engine():
|
57 |
"""Return AnonymizerEngine."""
|
|
|
72 |
|
73 |
def anonymize(text, analyze_results):
|
74 |
"""Anonymize identified input using Presidio Abonymizer."""
|
75 |
+
if not text:
|
76 |
+
return
|
77 |
res = anonymizer_engine().anonymize(text, analyze_results)
|
78 |
return res.text
|
79 |
|
80 |
+
|
81 |
def annotate(text, st_analyze_results, st_entities):
|
82 |
tokens = []
|
83 |
# sort by start index
|
|
|
97 |
tokens.append(text[res.end:])
|
98 |
return tokens
|
99 |
|
100 |
+
|
101 |
+
st.set_page_config(page_title="Privy + Presidio demo (English)", layout="wide")
|
102 |
|
103 |
# Side bar
|
104 |
st.sidebar.markdown(
|
105 |
+
"""
|
106 |
+
Detect and anonymize PII in text using an [NLP model](https://huggingface.co/beki/en_spacy_pii_distilbert) trained on protocol traces (JSON, SQL, XML etc.) generated by
|
107 |
+
[Privy](https://github.com/pixie-io/pixie/tree/main/src/datagen/pii/privy) and rule-based classifiers from [Presidio](https://aka.ms/presidio).
|
108 |
"""
|
109 |
)
|
110 |
|
|
|
118 |
label="Acceptance threshold", min_value=0.0, max_value=1.0, value=0.35
|
119 |
)
|
120 |
|
121 |
+
st_return_decision_process = st.sidebar.checkbox(
|
122 |
+
"Add analysis explanations in json")
|
123 |
|
124 |
st.sidebar.info(
|
125 |
"Privy is an open source framework for synthetic data generation in protocol trace formats (json, sql, html etc). Presidio is an open source framework for PII detection and anonymization. "
|
|
|
128 |
|
129 |
|
130 |
# Main panel
|
131 |
+
analyzer_load_state = st.info(
|
132 |
+
"Starting Presidio analyzer and loading Privy-trained PII model...")
|
133 |
engine = analyzer_engine()
|
134 |
analyzer_load_state.empty()
|
135 |
|
136 |
|
137 |
st_text = st.text_area(
|
138 |
label="Type in some text",
|
139 |
+
value="SELECT shipping FROM users WHERE shipping = '201 Thayer St Providence RI 02912'"
|
|
|
140 |
"\n\n"
|
141 |
"{user: Willie Porter, ip: 192.168.2.80, email: [email protected]}",
|
142 |
height=200,
|
143 |
)
|
144 |
|
145 |
+
button = st.button("Detect PII")
|
146 |
+
|
147 |
+
if 'first_load' not in st.session_state:
|
148 |
+
st.session_state['first_load'] = True
|
149 |
+
|
150 |
# After
|
151 |
st.subheader("Analyzed")
|
152 |
with st.spinner("Analyzing..."):
|
153 |
+
if button or st.session_state.first_load:
|
154 |
+
st_analyze_results = analyze(
|
155 |
+
text=st_text,
|
156 |
+
entities=st_entities,
|
157 |
+
language="en",
|
158 |
+
score_threshold=st_threshold,
|
159 |
+
return_decision_process=st_return_decision_process,
|
160 |
+
)
|
161 |
+
annotated_tokens = annotate(st_text, st_analyze_results, st_entities)
|
162 |
+
# annotated_tokens
|
163 |
+
annotated_text(*annotated_tokens)
|
164 |
# vertical space
|
165 |
st.text("")
|
166 |
+
|
167 |
st.subheader("Anonymized")
|
168 |
|
169 |
with st.spinner("Anonymizing..."):
|
170 |
+
if button or st.session_state.first_load:
|
171 |
+
st_anonymize_results = anonymize(st_text, st_analyze_results)
|
172 |
+
st_anonymize_results
|
173 |
+
|
174 |
|
175 |
# table result
|
176 |
st.subheader("Detailed Findings")
|
|
|
190 |
)
|
191 |
|
192 |
st.dataframe(df, width=1000)
|
|
|
193 |
else:
|
194 |
st.text("No findings")
|
195 |
|
196 |
+
st.session_state['first_load'] = True
|
197 |
+
|
198 |
# json result
|
199 |
+
|
200 |
+
|
201 |
class ToDictListEncoder(JSONEncoder):
|
202 |
"""Encode dict to json."""
|
203 |
|