Spaces:
Runtime error
Runtime error
bc180203823
commited on
Commit
•
fe407fb
1
Parent(s):
0a6985b
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""DDColor_colab.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/github/camenduru/DDColor-colab/blob/main/DDColor_colab.ipynb
|
8 |
+
"""
|
9 |
+
|
10 |
+
# Commented out IPython magic to ensure Python compatibility.
|
11 |
+
# %cd /content
|
12 |
+
!git clone -b dev https://github.com/camenduru/DDColor
|
13 |
+
|
14 |
+
!apt -y install -qq aria2
|
15 |
+
!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/camenduru/cv_ddcolor_image-colorization/resolve/main/pytorch_model.pt -d /content/DDColor/models -o pytorch_model.pt
|
16 |
+
|
17 |
+
!wget https://modelscope.oss-cn-beijing.aliyuncs.com/test/images/audrey_hepburn.jpg -O /content/DDColor/in.jpg
|
18 |
+
!pip install -q timm
|
19 |
+
|
20 |
+
# %cd /content/DDColor
|
21 |
+
|
22 |
+
!sed -i 's/from \.version import __gitsha__, __version__/# from \.version import __gitsha__, __version__/' /content/DDColor/basicsr/__init__.py
|
23 |
+
|
24 |
+
import argparse
|
25 |
+
import cv2
|
26 |
+
import numpy as np
|
27 |
+
import os
|
28 |
+
from tqdm import tqdm
|
29 |
+
import torch
|
30 |
+
from basicsr.archs.ddcolor_arch import DDColor
|
31 |
+
import torch.nn.functional as F
|
32 |
+
|
33 |
+
class ImageColorizationPipeline(object):
|
34 |
+
|
35 |
+
def __init__(self, model_path, input_size=256, model_size='large'):
|
36 |
+
|
37 |
+
self.input_size = input_size
|
38 |
+
if torch.cuda.is_available():
|
39 |
+
self.device = torch.device('cuda')
|
40 |
+
else:
|
41 |
+
self.device = torch.device('cpu')
|
42 |
+
|
43 |
+
if model_size == 'tiny':
|
44 |
+
self.encoder_name = 'convnext-t'
|
45 |
+
else:
|
46 |
+
self.encoder_name = 'convnext-l'
|
47 |
+
|
48 |
+
self.decoder_type = "MultiScaleColorDecoder"
|
49 |
+
|
50 |
+
if self.decoder_type == 'MultiScaleColorDecoder':
|
51 |
+
self.model = DDColor(
|
52 |
+
encoder_name=self.encoder_name,
|
53 |
+
decoder_name='MultiScaleColorDecoder',
|
54 |
+
input_size=[self.input_size, self.input_size],
|
55 |
+
num_output_channels=2,
|
56 |
+
last_norm='Spectral',
|
57 |
+
do_normalize=False,
|
58 |
+
num_queries=100,
|
59 |
+
num_scales=3,
|
60 |
+
dec_layers=9,
|
61 |
+
).to(self.device)
|
62 |
+
else:
|
63 |
+
self.model = DDColor(
|
64 |
+
encoder_name=self.encoder_name,
|
65 |
+
decoder_name='SingleColorDecoder',
|
66 |
+
input_size=[self.input_size, self.input_size],
|
67 |
+
num_output_channels=2,
|
68 |
+
last_norm='Spectral',
|
69 |
+
do_normalize=False,
|
70 |
+
num_queries=256,
|
71 |
+
).to(self.device)
|
72 |
+
|
73 |
+
self.model.load_state_dict(
|
74 |
+
torch.load(model_path, map_location=torch.device('cpu'))['params'],
|
75 |
+
strict=False)
|
76 |
+
self.model.eval()
|
77 |
+
|
78 |
+
@torch.no_grad()
|
79 |
+
def process(self, img):
|
80 |
+
self.height, self.width = img.shape[:2]
|
81 |
+
# print(self.width, self.height)
|
82 |
+
# if self.width * self.height < 100000:
|
83 |
+
# self.input_size = 256
|
84 |
+
|
85 |
+
img = (img / 255.0).astype(np.float32)
|
86 |
+
orig_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1] # (h, w, 1)
|
87 |
+
|
88 |
+
# resize rgb image -> lab -> get grey -> rgb
|
89 |
+
img = cv2.resize(img, (self.input_size, self.input_size))
|
90 |
+
img_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1]
|
91 |
+
img_gray_lab = np.concatenate((img_l, np.zeros_like(img_l), np.zeros_like(img_l)), axis=-1)
|
92 |
+
img_gray_rgb = cv2.cvtColor(img_gray_lab, cv2.COLOR_LAB2RGB)
|
93 |
+
|
94 |
+
tensor_gray_rgb = torch.from_numpy(img_gray_rgb.transpose((2, 0, 1))).float().unsqueeze(0).to(self.device)
|
95 |
+
output_ab = self.model(tensor_gray_rgb).cpu() # (1, 2, self.height, self.width)
|
96 |
+
|
97 |
+
# resize ab -> concat original l -> rgb
|
98 |
+
output_ab_resize = F.interpolate(output_ab, size=(self.height, self.width))[0].float().numpy().transpose(1, 2, 0)
|
99 |
+
output_lab = np.concatenate((orig_l, output_ab_resize), axis=-1)
|
100 |
+
output_bgr = cv2.cvtColor(output_lab, cv2.COLOR_LAB2BGR)
|
101 |
+
|
102 |
+
output_img = (output_bgr * 255.0).round().astype(np.uint8)
|
103 |
+
|
104 |
+
return output_img
|
105 |
+
|
106 |
+
colorizer = ImageColorizationPipeline(model_path='/content/DDColor/models/pytorch_model.pt', input_size=512)
|
107 |
+
|
108 |
+
# helper function taken from: https://huggingface.co/blog/stable_diffusion
|
109 |
+
from PIL import Image
|
110 |
+
def image_grid(imgs, rows, cols):
|
111 |
+
assert len(imgs) == rows*cols
|
112 |
+
|
113 |
+
w, h = imgs[0].size
|
114 |
+
grid = Image.new('RGB', size=(cols*w, rows*h))
|
115 |
+
grid_w, grid_h = grid.size
|
116 |
+
|
117 |
+
for i, img in enumerate(imgs):
|
118 |
+
grid.paste(img, box=(i%cols*w, i//cols*h))
|
119 |
+
return grid
|
120 |
+
|
121 |
+
image_in = cv2.imread('/content/DDColor/in.jpg')
|
122 |
+
image_out = colorizer.process(image_in)
|
123 |
+
cv2.imwrite('/content/DDColor/out.jpg', image_out)
|
124 |
+
image_in_pil = Image.fromarray(cv2.cvtColor(image_in, cv2.COLOR_BGR2RGB))
|
125 |
+
image_out_pil = Image.fromarray(cv2.cvtColor(image_out, cv2.COLOR_BGR2RGB))
|
126 |
+
images = [image_in_pil, image_out_pil]
|
127 |
+
grid = image_grid(images, rows=1, cols=2)
|
128 |
+
grid
|