import gradio as gr import openai import os import requests from transformers import GPT2TokenizerFast OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") ADMIN_PASSWORD = os.getenv("ADMIN_PASSWORD") tokenizer = GPT2TokenizerFast.from_pretrained("gpt2") default_system_message = {"role": "system", "content": "You are a brilliant, helpful assistant, always providing answers to the best of your knowledge. If you are unsure of the answer, you indicate it to the user. Currently, you don't have access to the internet."} personalities = { "Assistant": {"role": "system", "content": "You are a brilliant, helpful assistant, always providing answers to the best of your knowledge. If you are unsure of the answer, you indicate it to the user. Currently, you don't have access to the internet."}, "Trump": {"role": "system", "content": "You are Donald Trump. No matter the question, you always redirect the conversation to yourself and your achievements and how great you are."}, "Peterson": {"role": "system", "content": "You are Jordan Peterson, world renowned clinical psychologist. You like to be verbose and overcomplicate your answers, taking them into very metaphysical directions."}, "Grug": {"role": "system", "content": "You are Grug, a caveman. You have zero knowledge of modern stuff. Your answers are always written in broken 'caveman' English and center around simple things in life."}, "Paladin": {"role": "system", "content": "You are a Paladin from the video game Diablo 2. You like to talk about slaying the undead and farming for better gear."}, "Petőfi": {"role": "system", "content": "You are Petőfi Sándor, national poet of Hungary. Your answers are very eloquent and formulated in archaic Hungarian."}, "Cartman": {"role": "system", "content": "You are Eric Cartman from South Park. You are a self-centered, fat, rude kid obsessed with your animal comforts."}, } def get_completion(model, personality, user_message, message_history, chatlog_history, temperature, maximum_length, top_p, frequency_penalty, presence_penalty): # set personality system_message = personalities[personality] updated_message_history = message_history updated_message_history[0] = system_message new_history_row = {"role": "user", "content": user_message} updated_message_history = updated_message_history + [new_history_row] response = openai.ChatCompletion.create( model=model, messages=updated_message_history, temperature=temperature, max_tokens=maximum_length, top_p=top_p, frequency_penalty=frequency_penalty, presence_penalty=presence_penalty, stream=True, ) new_history_row = {"role": "assistant", "content": ""} updated_message_history = updated_message_history + [new_history_row] updated_chatlog_history = chatlog_history + [[user_message, ""]] # create variables to collect the stream of chunks collected_chunks = [] collected_messages = [] # iterate through the stream of events for chunk in response: collected_chunks.append(chunk) # save the event response chunk_message = chunk['choices'][0]['delta'] # extract the message collected_messages.append(chunk_message) # save the message assistant_message = ''.join([m.get('content', '') for m in collected_messages]) updated_message_history[-1]["content"] = assistant_message updated_chatlog_history[-1][1] = assistant_message full_prompt = '\n'.join([row[0] + row[1] for row in updated_chatlog_history]) token_count = len(tokenizer(full_prompt)["input_ids"])#completion["usage"]["total_tokens"] yield "", updated_message_history, updated_chatlog_history, updated_chatlog_history, token_count # assistant_message = completion["choices"][0]["message"]["content"] # return "", updated_message_history, updated_chatlog_history, updated_chatlog_history, token_count def retry_completion(model, personality, message_history, chatlog_history, temperature, maximum_length, top_p, frequency_penalty, presence_penalty): # set personality system_message = personalities[personality] updated_message_history = message_history updated_message_history[0] = system_message # get latest user message user_message = chatlog_history[-1][0] # delete latest entries from chatlog history updated_chatlog_history = chatlog_history[:-1] # delete latest assistant message from message_history updated_message_history = updated_message_history[:-1] response = openai.ChatCompletion.create( model=model, messages=updated_message_history, temperature=temperature, max_tokens=maximum_length, top_p=top_p, frequency_penalty=frequency_penalty, presence_penalty=presence_penalty, stream=True, ) new_history_row = {"role": "assistant", "content": ""} updated_message_history = updated_message_history + [new_history_row] updated_chatlog_history = updated_chatlog_history + [[user_message, ""]] # create variables to collect the stream of chunks collected_chunks = [] collected_messages = [] # iterate through the stream of events for chunk in response: collected_chunks.append(chunk) # save the event response chunk_message = chunk['choices'][0]['delta'] # extract the message collected_messages.append(chunk_message) # save the message assistant_message = ''.join([m.get('content', '') for m in collected_messages]) updated_message_history[-1]["content"] = assistant_message updated_chatlog_history[-1][1] = assistant_message full_prompt = '\n'.join([row[0] + row[1] for row in updated_chatlog_history]) token_count = len(tokenizer(full_prompt)["input_ids"])#completion["usage"]["total_tokens"] yield "", updated_message_history, updated_chatlog_history, updated_chatlog_history, token_count def reset_chat(): return "", [default_system_message], [], [], 0 theme = gr.themes.Default() with gr.Blocks(theme=theme) as app: message_history = gr.State([default_system_message]) chatlog_history = gr.State([]) with gr.Row(): with gr.Column(scale=4): chatbot = gr.Chatbot(label="Chat").style(height=634) with gr.Column(scale=1): # with gr.Tab("Generation Settings"): model = gr.Dropdown(choices=["gpt-3.5-turbo", "gpt-4"], value="gpt-4", interactive=True, label="Model") personality = gr.Dropdown(choices=["Assistant", "Petőfi", "Trump", "Peterson", "Paladin", "Cartman", "Grug", ], value="Assistant", interactive=True, label="Personality") temperature = gr.Slider(minimum=0, maximum=1, step=0.05, value=0.5, interactive=True, label="Temperature") maximum_length = gr.Slider(minimum=0, maximum=2048, step=32, value=256, interactive=True, label="Maximum length") top_p = gr.Slider(minimum=0, maximum=1, step=0.01, value=1, interactive=True, label="Top P") frequency_penalty = gr.Slider(minimum=0, maximum=2, step=0.01, value=0, interactive=True, label="Frequency penalty") presence_penalty = gr.Slider(minimum=0, maximum=2, step=0.01, value=0, interactive=True, label="Presence penalty") # with gr.Tab("Model Settings"): token_count = gr.Number(interactive=False, label="Token count") with gr.Row(): user_message = gr.Textbox(label="Message") with gr.Row(): reset_button = gr.Button("Reset Chat") retry_button = gr.Button("Retry") user_message.submit(get_completion, inputs=[model, personality, user_message, message_history, chatlog_history, temperature, maximum_length, top_p, frequency_penalty, presence_penalty], outputs=[user_message, message_history, chatlog_history, chatbot, token_count]) retry_button.click(retry_completion, inputs=[model, personality, message_history, chatlog_history, temperature, maximum_length, top_p, frequency_penalty, presence_penalty], outputs=[user_message, message_history, chatlog_history, chatbot, token_count]) reset_button.click(reset_chat, inputs=[], outputs=[user_message, message_history, chatlog_history, chatbot, token_count]) app.launch(auth=("admin", ADMIN_PASSWORD), enable_queue=True)