Spaces:
Running
Running
barghavani
commited on
Commit
•
5ea17e4
1
Parent(s):
6b37b75
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import io
|
3 |
+
import os
|
4 |
+
import PyPDF2
|
5 |
+
from gradio.components import File, Textbox
|
6 |
+
from langchain_openai import ChatOpenAI
|
7 |
+
from langchain.chains import LLMChain
|
8 |
+
from langchain.memory import ConversationBufferMemory
|
9 |
+
from langchain import PromptTemplate
|
10 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
11 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
12 |
+
|
13 |
+
def extract_text_from_pdf_binary(pdf_binary):
|
14 |
+
"""Extracts text from a PDF file binary."""
|
15 |
+
text = ""
|
16 |
+
pdf_data = io.BytesIO(pdf_binary)
|
17 |
+
reader = PyPDF2.PdfReader(pdf_data)
|
18 |
+
for page in reader.pages:
|
19 |
+
page_text = page.extract_text()
|
20 |
+
if page_text:
|
21 |
+
text += page_text
|
22 |
+
return text
|
23 |
+
|
24 |
+
def calculate_resume_score(resume_text, job_description):
|
25 |
+
"""
|
26 |
+
Calculates the relevance score of the resume to the job description using cosine similarity.
|
27 |
+
|
28 |
+
Parameters:
|
29 |
+
- resume_text (str): Text of the resume.
|
30 |
+
- job_description (str): Text of the job description.
|
31 |
+
|
32 |
+
Returns:
|
33 |
+
- score (float): Similarity score between the resume and job description.
|
34 |
+
"""
|
35 |
+
vectorizer = TfidfVectorizer()
|
36 |
+
tfidf_matrix = vectorizer.fit_transform([resume_text, job_description])
|
37 |
+
score = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:2])[0][0]
|
38 |
+
return score
|
39 |
+
|
40 |
+
def format_resume_to_yaml(api_key, file_content, job_description):
|
41 |
+
"""Formats the content of a resume PDF file to YAML and calculates its relevance to a job description."""
|
42 |
+
if not file_content:
|
43 |
+
raise ValueError("The uploaded file is empty.")
|
44 |
+
|
45 |
+
os.environ['OPENAI_API_KEY'] = api_key
|
46 |
+
resume_text = extract_text_from_pdf_binary(file_content)
|
47 |
+
|
48 |
+
# Additional step to calculate the resume score relative to the job description.
|
49 |
+
resume_score = calculate_resume_score(resume_text, job_description)
|
50 |
+
|
51 |
+
# Formatting the resume to YAML (the existing implementation continues here)...
|
52 |
+
# Assume llm_chain.predict and other logic here as before.
|
53 |
+
|
54 |
+
# For demonstration, return both formatted resume (in real use, integrate this properly) and score.
|
55 |
+
return "Formatted Resume in YAML (placeholder)", resume_score
|
56 |
+
|
57 |
+
def main():
|
58 |
+
"""Main function to launch the Gradio interface with job description input."""
|
59 |
+
iface = gr.Interface(
|
60 |
+
fn=format_resume_to_yaml,
|
61 |
+
inputs=[
|
62 |
+
Textbox(label="Enter your OpenAI API Key"),
|
63 |
+
File(label="Upload your PDF resume", type="binary"),
|
64 |
+
Textbox(label="Paste the Job Description here", lines=10)
|
65 |
+
],
|
66 |
+
outputs=[
|
67 |
+
Textbox(label="Formatted Resume in YAML"),
|
68 |
+
Textbox(label="Resume Score")
|
69 |
+
],
|
70 |
+
title="Resume to YAML Formatter with ATS Scoring",
|
71 |
+
description="Upload a PDF resume, paste the job description, and enter your OpenAI API key to get the resume formatted to a YAML template and score its relevance to the job."
|
72 |
+
)
|
73 |
+
iface.launch(debug=True, share=True)
|
74 |
+
|
75 |
+
if __name__ == "__main__":
|
76 |
+
main()
|